31,356 research outputs found

    Operations research investigations of satellite power stations

    Get PDF
    A systems model reflecting the design concepts of Satellite Power Stations (SPS) was developed. The model is of sufficient scope to include the interrelationships of the following major design parameters: the transportation to and between orbits; assembly of the SPS; and maintenance of the SPS. The systems model is composed of a set of equations that are nonlinear with respect to the system parameters and decision variables. The model determines a figure of merit from which alternative concepts concerning transportation, assembly, and maintenance of satellite power stations are studied. A hybrid optimization model was developed to optimize the system's decision variables. The optimization model consists of a random search procedure and the optimal-steepest descent method. A FORTRAN computer program was developed to enable the user to optimize nonlinear functions using the model. Specifically, the computer program was used to optimize Satellite Power Station system components

    The upper-branch stability of compressible boundary layer flows

    Get PDF
    The upper-branch linear and nonlinear stability of compressible boundary layer flows is studied using the approach of Smith and Bodonyi (1982) for a similar incompressible problem. Both pressure gradient boundary layers and Blasius flow are considered with and without heat transfer, and the neutral eigenrelations incorporating compressibility effects are obtained explicitly. The compressible nonlinear viscous critical layer equations are derived and solved numerically and the results indicate some solutions with positive phase shift across the critical layer. Various limiting cases are investigated including the case of much larger disturbance amplitudes and this indicates the structure for the strongly nonlinear critical layer of the Benney-Bergeon (1969) type. It is also shown how a match with the inviscid neutral inflexional modes arising from the generalized inflexion point criterion, is achieved

    Combined electronic nose and tongue for a flavour sensing system

    Get PDF
    We present a novel, smart sensing system developed for the flavour analysis of liquids. The system comprises both a so-called "electronic tongue" based on shear horizontal surface acoustic wave (SH-SAW) sensors analysing the liquid phase and a so-called "electronic nose" based on chemFET sensors analysing the gaseous phase. Flavour is generally understood to be the overall experience from the combination of oral and nasal stimulation and is principally derived from a combination of the human senses of taste (gustation) and smell (olfaction). Thus, by combining two types of microsensors, an artificial flavour sensing system has been developed. Initial tests conducted with different liquid samples, i.e. water, orange juice and milk (of different fat content), resulted in 100% discrimination using principal components analysis; although it was found that there was little contribution from the electronic nose. Therefore further flavour experiments were designed to demonstrate the potential of the combined electronic nose/tongue flavour system. Consequently, experiments were conducted on low vapour pressure taste-biased solutions and high vapour pressure, smell-biased solutions. Only the combined flavour analysis system could achieve 100% discrimination between all the different liquids. We believe that this is the first report of a SAW-based analysis system that determines flavour through the combination of both liquid and headspace analysis

    Investigation of the effects of a moving acoustic medium on jet noise measurements

    Get PDF
    Noise from an unheated sonic jet in the presence of an external flow is measured in a free-jet wind tunnel using microphones located both inside and outside the flow. Comparison of the data is made with results of similar studies. The results are also compared with theoretical predictions of the source strength for jet noise in the presence of flow and of the effects of sound propagation through a shear layer

    Cosmological redshift distortion: deceleration, bias and density parameters from future redshift surveys of galaxies

    Get PDF
    The observed two-point correlation functions of galaxies in redshift space become anisotropic due to the geometry of the universe as well as due to the presence of the peculiar velocity field. On the basis of linear perturbation theory, we expand the induced anisotropies of the correlation functions with respect to the redshift zz, and obtain analytic formulae to infer the deceleration parameter q0q_0, the density parameter Ω0\Omega_0 and the derivative of the bias parameter dlnb/dzd\ln b/dz at z=0z=0 in terms of the observable statistical quantities. The present method does not require any assumption of the shape and amplitude of the underlying fluctuation spectrum, and thus can be applied to future redshift surveys of galaxies including the Sloan Digital Sky Survey. We also evaluate quantitatively the systematic error in estimating the value of β0Ω00.6/b\beta_0 \equiv \Omega_0^{0.6}/b from a galaxy redshift survey on the basis of a conventional estimator for β0\beta_0 which neglects both the geometrical distortion effect and the time evolution of the parameter β(z)\beta(z). If the magnitude limit of the survey is as faint as 18.5 (in B-band) as in the case of the Sloan Digital Sky Survey, the systematic error ranges between -20% and 10% depending on the cosmological parameters. Although such systematic errors are smaller than the statistical errors in the current surveys, they will dominate the expected statistical error for future surveys.Comment: 9 pages, 5 figs, aastex, ApJ in press, replaced version includes minor correction

    Mathematical models for radiation transfer

    Get PDF
    A radiation transfer model was modified to include semitransparent and opaque layers as well as molecular constituents. An example of the use of the program and an analysis of the mathematical model are included
    corecore