General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA TECHNICAL MEMORANDUM

NASA TM X-73372

(NASA-TH-X-73372) ORERATICNS bESEAECB
N77-21547
Invesilgaticas Cf Satellite pCebr staticns
(NASA) 41 P HC $\triangle 03 / G F A 01$ CSCI 10A
G3/44 22910

OPERATIONS RESEARCH INVESTIGATIONS OF SATELLITE POWER STATIONS

By John W. Cole and John L. Ballard Program Development

December 1976

NASA

George C. Marshall Space Flight Center Marsball Space Flight Center, Alabama

17. KEY WORDS		18. DISTRIBUTION STATEMENT Unclassified-Unlimited	
19. SECURITY CLASSIF. (of thie fopat)	20. SECURITY CLASSIF. (of ('la pait)	21. NO. OF PAGES	22. PRICE
Unclassified	Unclassified	42	NTIS

TABLE OF CONTENTS

Page
INTRODUCTION 1
DESCRIPTION OF RESEARCH 4
StUDY Status 4
RESEARCH OBJECTIVES AND PROCEDURES 6
Satellite Power System Model 7
NONLINEAR OPTIMIZATION METHODS 11
Classical Optimization Methods 11
Unconstrained optimization Search Techniques 14
A Computerized Optimization Program 20
CONCLUSIONS AND RECOMMENDATIONS 27
REFERENCES 28
APPENDIX A A-1

OPERATIONS RESEARCH INVESTIGATIONS OF SATELLITE POWER STATIONS

INTRODUCTION

Several concepts have been proposed for generating electric power in space, transmitting the energy to Earth, and using the energy as useful power. Initial analyses of these concepts indicate that they may be competitive with future commercial power rates; however, idvances in technology are required well beyond the current state-of-the-art to make the concepts cost effective.

Three basic concepts have been identified as possible cost effective candidates: the photovoltaic, the thermal concentrator, and the nuclear. The photovoltaic designs typically consist of solar cells arranged with a lightweight concentrator into a large, essentially flat array of 10 by 20 kilometers producing on the order of 18 gigawatts of electricity. Such a satellite will weigh in excess of 100 million kilograms. To be of significant benefit to the U.S. energy requirements, at least one must be placed in synchronous orbit each year for 30 years.

The thermal concentrator system typically consists of many large concentrating mirrors built of smaller flat facets which con-
centrate the solar flux onto thermionic diodes, thermal absorbers for some working fluid, or a combination of both. This concept is typically one-third the dimension of the photovoltaic, but twice the weight.

The nuclear concept, using high temperature gas reactors, seems to provide the best nuclear option and is considerably smaller than the other concepts, but is much heavier.

Many concept and design questions are still open. The economic availability of the SPS program will be strongly dependent on the technical design, logistics, assembly, maintenance, and operations philosophies selected. There is a desperate need for techniques that will search out the optimum answers to complex and involved relationships of design, construction, and operation. To this end the following research was proposed.

DESCRIPTION OF RESEARCH

Develop a systems model of the current in suse design of the satellite power stations of both the photovoltaic type and the solar concentrator with a thermal engine type. The models should be of sufficient scope to include the interrelationships of the major design parameters, the transportation to and between orbits, assembly and maintenance, and power benefits throughout the useful life of the system. Define a figure of merit describing the power benefits, and
develop a method for finding the benefit partial derivatives with respect to the significant design variables. Inve stigate nonlinear programming methods for optimizing the model design for maximum benefit subject to linear design constraints. Implement an appropriate optimization method:

Develop a systems model of a reasonably equivalent groundbased solar power station and apply the above techniques to optimize the design. Evaluate and compare the power concepts investigated.

The level of depth of model fidelity should be limited to the extent necessary to prove the analysis technique. Sufficient depth should be included, however, to facilitate expansion of the models for more detailed in-house investigations.

This research is intended to be performed during two 10 -week terms of activity, specifically, summer 1976 and summer 1977.

STUDY STATUS

During the first term, investigation of contractor descriptions and NASA descriptions of Satellite Power Systems indicated that the model eq ations could be described by nonlinear equations constrained by bounded variables. An optimization procedure was developed to solve a set of equations subject to such conditions and was applied to an expanded version of the ECON sizing equations (reference 1). The program was debugged and applied to the low

Earth orbit (LEO) vs. the geosynchronous Earth orbit (GEO) assembly questions and to the photovoltaic and thermal concentrator design. The fidelity and extent of the model equation was not sufficient, however, to adequately investigate the pertinent question, but was quite adequate to verify the optimization techniques and procedures.

The following term will bring the model equation into consis tency with current concepts and will expand them to be able to adequately address some of the critical problem areas previously mentioned. Comparative analyses of alternative concepts will be conducted and, if time permits, an equivalent ground-based solar concept will be modeled to provide a more firm basis of comparison.

RESEARCH OBJECTIVES AND PROCEDURES

The objective of this research was to investigate the potential of using operation research techniques in planning the logistic requirements for the construction of a Satellite Power Station (SPS). As in most operations research studies development of a mathematical system model was a necessity. Specific attention was given to developing a model of the transportation to and from orbit and of the assembly subsystems. The modeling approach taken was to define the pertinent decision variables in the system. The values of these variables are of prime interest and will be directly determined through the solution procedure. An existing mathematical model was modified in order to integrate the decision variables, system parameters, and system restrictions into one model. The final product of the modeling was the determination of an objective function that defines a measure of the effectiveness of the system. This objective function provides a means of comparing alternative feasible solutions.

The second step in the research activity was the investigation of optimization techniques that could be applicable to the analysis of the existing mathematical model. Optimization techniques fall into two major classes - linear and nonlinear optimization methods. If a mathematical model contains only linear interrelationships between the
decision variables and system parameters in both the objective function, as well as, in all the constraints, the model is classified as a linear optimization model. Otherwise, the model is categorized as a nonlinear optimization model. Solution techniques applicable to practical nonlinear optimization models are not as well developed as those used to solve linear optimization problems.

Most solution techniques used to solve optimization problems are iterative. That is, the optimal solution is found in a step-wise fashion. Each successive iteration provides a new set of decision variable values that produces a superior value of the objective function, and the optimal solution is determined at the final iteration. The final product of this research was the implementation of a computerized algorithm that can be used to numerically solve a bounded nonlinear optimization problem.

Satellite Power System Model

The Satellite Power System model consists of the following subsystems: (1) the satellite sizing subsystem; (2) the assembly equipment sizing subsystem; (3) the transportation subsystem; (4) the ground station support aubsystem; and, (5) the cost subsystem. Figure 1 depicts the five subsystems and their interrelationships. The satellite sizing subsystem for the photovaltaic SPS concept consists of the

Figure 1.
Satellite Power System
Subsystem Schematic
following output variables:
(1) Power output at rectenna (kw)
(2) Aera of the solar blanket (km^{2})
(3) Aera of the solar concentrator (km^{2})
(4) Mass of the solar blankets (kg)
(5) Mass of the solar concentrator (kg)
(6) Mass of the conducting structure (kg)
(7) Mass of the non-conducting structure (kg)
(8) Mass of the central mast (kg)
(9) Total mass of the antenna structure (kg)
(10) Total mass of the dc-rf converters (kg)
(11) Total mass of the antenna interface (kg)
(12) Total mass of the phase control electronics (kg)
(13) Total mass of the antenna (kg)
(14) Miscellaneous mass (kg)
(15) Total mass of the operational satellite (kg)

The fifteen preceeding satellite sizing variables provide inputs to the four other subsystems.

The assembly equipment sizing suosystem determines the individual and total mass of assembly equipment and personnel required for the construction of one SPS. Certain decision variables found in this subsystem are the percentage of total satellite mass to be assembled by man input, total man-days of construction time, rate of mannedassembly, rate of remote controlled assembly, and the productivity of operations in space. Outputs of the assembly equipment sizing subsystem are total mass of the satellite to be as sembled by man input, total mass of the satellite to be constructed oy remote construction, total man-days of construction time, total machine days of construction time, number of on orbit personnel, number of on-orbit teleoperators,
total number rf fabrication modules, total number of manned manipulators, total number of LEO space stations, total mass of the fabrication units, total mass of the releoperator units, total mass of the Low Earth Orbit (LEO) support vehicles, total mass of the extra-vehicular activity, total mass of the manned manupulator units, total mass of the LEO space stations, total mass of the assembly equipment propellant, and total mass of the space station resupply. The outputs of the assembly subsystem provide inputs to the transportation requirements subsystem and the cost subsystem.

The transportation subsystem computes the sizing of the components necessary to transport the crew modules between the LEO and geosynchronous (GEO) space stations. Among the required inputs are the mass of the crew modules, the mass of the orbital transfer vehicles propellants, total construction time, and the time between crew rotations. Also, an advanced ion stage is sized to transport an assembled SPS from LEO to GEO. If other alternatives than LEO assembly are to be considered, this subsystem would be substantially modified. Other significant factors computed by the transportation subsystem are the heavy lift launch vehicle requirements for the construction and equipment support for the assembly of one SPS and the Shuttle requirements for the transportation of personnel to LEO and vehicle requirements for transfer to GEO.

The cost subsystem utilizes the output of all the previous subsystems and the ground station support subsystem. The final product of the model is the output of the cost subsystem, and is an expression for total production cost of one SPS. The cost expression is composed of the total LEO launch cout, total space station and assembly cost, total satellite procurement cost, and the total ground station procurement cost. Presently, the cost model is an aggregation of an earlier model developed for NASA by ECON (1) and current MSFC concepts. The model has been transformed into a FORTRAN subroutine consisting of 169 decision variables and parameters. Many of the interrelationships between the variables are nonlinear.

NONLINEAR OPTIMIZ.ATION METHODS

Classical Optimization Methods
Classical nonlinear optimization techingues are based upon theoretical mathematical analyses that inve lve an application of the principles of calculus to problems involving maxima and minima. In order to apply the classical optimization techniques to the minimization (maximization) of a function, the function must be shown to be continuous and differentiable within a region (R) and to have a minimum (maximum) within the region. The well-known theorem of Weierstrass (3) states:
"Every function which is continuous in a closed region R of variables $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ possesses a largest and a smallest value within the interior or on the boundary of that region." Therefore, this theorem asserts that an extreme point exists within or on the boundary of a region R. Gottfried and Weisman (4), Hadley (5), and Taha (6) among others present discussions of the application of classical optimization techniques to single-dimensional and multi-dimensional unconstrained functions. These techniques are based upon satisfying certain necessary and sufficient conditions. The necessary condition for a function, $f\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, to pass through an extremum at the point $\left(X_{10}, X_{20}, \ldots, X_{n o}\right)$ is that the partial derivate of $f\left(X_{1}, X_{2}\right.$, $\left.\ldots, X_{n}\right)$ vanishes at $\left(X_{10}, X_{20}, \ldots, X_{n o}\right)$. The extremum may be a relative maximum, relative minimum, or a saddle point. The sufficient condition for the characterization of an extremum as a relative maximum, or a saddle point. The sufficient condition for the characterization of an extremum as a relative maximum or minimum is restated by Gottfried and Weisman (4) as follows:

Let $f\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ vary continuously in an open region R. Consider the set of determinants $D_{i}, i=1,2, \ldots, n$, where

$$
D_{i}=\left|\begin{array}{cccc}
\frac{\partial f}{\partial X_{1}^{2}} & \frac{\partial f}{\partial X_{1} 2 X_{2}} & \cdots & \frac{\partial f}{\partial X_{1} 2 X_{n}} \\
\frac{\partial f}{\partial X_{2}^{2} X_{1}} & \frac{\partial f}{X_{2}^{2}} & \cdots & \frac{\partial f}{X_{2} 2 X_{n}} \\
\vdots & & \cdots & \vdots
\end{array}\right|
$$

$$
\left|\begin{array}{llll}
\frac{\partial f}{\partial X_{n} 2 x_{1}} & \frac{\partial f}{\partial X_{n} 2 x_{2}} & \cdots & \frac{\partial f}{\partial x_{n}^{2}}
\end{array}\right|
$$

$$
\text { evaluated at }\left(x_{10}, x_{20}, \ldots, x_{\text {no }}\right)
$$

If $2 f / \partial X_{1}=\frac{\partial f}{\partial x_{2}}=\ldots=\frac{\partial f}{\partial X_{n}}=0$ at $\left(X_{10}, X_{20} \ldots, X_{n o}\right)$ then,
(1) D_{i} less than 0 for $i=1,3,5, \ldots$ and D_{i} greater than 0 for $i=$ $2,4,6, \ldots$ indicate the presence of a relative maximum at (X_{10}, X_{20}, X_{no}).
(2) D_{i} greater than 0 for $i=1,2, \ldots n$ indicates the presence of a relative minimum at ($\mathrm{X}_{10}, \mathrm{X}_{20}, \ldots, \mathrm{X}_{\mathrm{no}}$).
(3) The failure to satisfy conditions (1) or (2) indicates a saddle point at ($\mathrm{X}_{10}, \mathrm{X}_{20}, \ldots \mathrm{X}_{\mathrm{no}}$).

Although the preceding conditions are satisfied, the classical approach to solving maxima and minima problems can only guarantee local minima and maxima and does not provide a direct means of finding the global or absolute minimum (maximum).

Classical optimization theory has been extended to minimizing (maximizing) a function $f\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ subject to n equality constraints of the form $g \dot{j}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=0$. The technique employe, is the method of Langrangian Multipliers. Kuhn and Tucker (7) derived the necessary and sufficient conditions for the Langrangian function to possess a saddle point at ($\mathrm{X}_{10}, \mathrm{X}_{20}, \ldots, \mathrm{X}_{\mathrm{no}}, \lambda_{10}, \lambda_{20}, \ldots, \lambda_{\text {mo }}$). In principle, classical optimization methods may be applied to a
general class of nonlinear problems (either constrained or unconstrained); however, severe computational difficulties arise when solving highdimensional problems. In fact, Hadley (5) asserts that classical methods are best suited for theoretical analyses or especially simple situations. They are not suited for numerical computations. Gottfried and Weisman (4) state that while classical theory serves to provide insight into the characteristics and problems associated with extremizing continuous functions, it does not provide efficient computational procedures for optimizing practical problems. However, classical theory provides a basis for the development of more efficient computational algorithms.

Unconstrained Optimization Search Techniques

Since classical optimization methods have been proven an inadequate means of solving practical nonlinear optimization problems, several numerical searching algorithms will be discussed as potential problem solving methods. Many numerical techniques operate in a sequential fashion. The algorithms search for the optimum by generating a succession of search points, and most use past information (previous search points) to determine a new search point with a corresponding improvement in the objective function. If the objective function is unimodal, sequential search techniques will yield an absolute optimum; otherwise, the procedure may only yield a local minimum (maximum) or a saddle point. Gottfried and Weisman (4) state that although many
practical engineering problems contain multi-modal objective functions, one can usually determine a subregion over which the function is unimodal and sequential search techniques provide a useful means for locating the optimum.

The simplest forms of search techniques are known as directsearch techniques. Such methods evaluate a function at several data points within a region in order to estimate the location of the minimum (maximum). A typical one-dimensional function is depicted below:

The function $f(X)$ is unimodal on the interval (L, U). The minimum of $f(X)$ lies at X^{*}. The goal of a direct search technique is to is olate the absolute minimum of $f(X)$ in the interval L_{n} after the evaluation of seven data points. The more powerful of two search techniques is the one that produces the smallest interval of uncertainty, L_{n}. Typical examples of one dimensional search techniques are the half-interval method, symmetrical two-point search, three-point search, Fibonacci search, and the golden-ratio search. Gottfried and Weisman (4) suggest
that the Fibonacci and golden-ratio search techniques are among the best available one-dimensional algorithms.

The golden-ratio search is based upon the golden ratio ($P=1.618034$). The procedure used by the golden-ratio search on the interval width L_{0} is as follows:
(1) Locate two search points a distance L_{0} / P from the end of the orginal interval, L_{0}.

(2) The new search interval becomes:

(3) Locate two search points within the interval $L_{2}, 1 / P$ units from the new end points and evaluate the function at each point.
(4) Continue the procedure outlined in step 3 for M iterations.
(5) The estimation of the value of X that provides the optimal value of $f(X)$ lies at the center of L_{M}, the last interval of uncertainty. The golden-ratio search procedure is an efficient technique and possesses decided computational advantages over Fibonacci search method. The algorithm is easily programmed on a digital computer and can become one of the components of a multi-dimensional gradient algorithm.

In order to minimize (maximize) a multi-dimensional continuous function $f\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ that is differentiable and unimodal, a class of numerical techniques known as gradient methods can be utilized. These methods are based upon classical optimization theory and employ numerical procedures to locate the point $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ that optimizes $f\left(X_{1}, X_{2}, \ldots, X_{n}\right)$. Among these procedures are the method of steepest descent, the conjugate gradient procedure, and the variable-metric algorithm.

The method of steepest descent utilizes numerical techniques for minimizing the function $f\left(X_{1}, X_{2}, \ldots, X_{n}\right)$. An algorithm for the method of steepest descent outlined by Gottfried and Weisman (4) is as follows:
(1) Find an initial point $\left(X_{10}, X_{20}, \ldots, X_{n o}\right)$ within the region and evaluate $f\left(X_{10}, X_{20}, \ldots, X_{\text {no }}\right)$.
(2) Evaluate the gradient vector $\nabla f\left(X_{1}, X_{2}, \ldots, X_{\text {no }}\right)$ at the point ($X_{10}, X_{20}, \ldots, X_{n o}$). The partial derivate evaluated numerically is as follows:

$$
\begin{gathered}
\frac{\partial f}{\partial X_{i}} \sim \frac{f\left(X_{1}, X_{2}, \ldots, X_{i}+D / 2, \ldots\right)-f\left(X_{1}, X_{2}, \ldots, X_{i}-D / 2, \ldots\right.}{D} \\
i=1,2, \ldots, n
\end{gathered}
$$

(3) A new point $\left(X_{11}, X_{21}, \ldots, X_{n 1}\right)$ is found by

$$
\begin{aligned}
\left(X_{11}, X_{21}, \ldots, x_{n 1}\right)= & \left(x_{10}, x_{20}, \ldots, x_{n 0}\right) \\
& f\left(x_{10}, x_{20}, \ldots, x_{n 0}\right) T
\end{aligned}
$$

The new point is found by proceeding in the direction of the negative gradient an arbitrarily small distance indicated by T. (T may be a scalar or a vector of dimension n).
(4) Let $\left(X_{10}, X_{20}, \ldots, X_{n 0}\right)=\left(X_{11}, X_{21}, \ldots, X_{n 1}\right)$ and return to Step 2.
(5) The procedure ends when:

$$
\frac{\partial f}{\partial x i} \leq \epsilon, \quad \in \sim 0 \text { for all } i
$$

and the last point determined is the stationary value of $f\left(X_{1}, X_{2}, \ldots\right.$, $\left.X_{n 0}\right)$. The method of steepest descent may lead to a saddle point rather than an extremum, although this is unlikely (8). Nevertheless, the characteristics of the stationary point can be analyzed by using random search techniques.

The steepest-decent algorithm can be improved if T is chosen in an optimal fashion, such that, $F\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ possesses a relative minimum along the line joining X_{K} and X_{K+1}^{*}. Where,

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{K}}=\left(\mathrm{x}_{1 \mathrm{~K}}, \mathrm{x}_{2 \mathrm{~K}}, \ldots, \mathrm{x}_{\mathrm{NK}}\right) \\
& \mathrm{x}_{\mathrm{K}+1}^{*}=\mathrm{x}_{\mathrm{K}}-\nabla \mathrm{fT}
\end{aligned}
$$

A one-dimensional search technique can be utilized to find the optimal distance to move along the line joining X_{K} and X_{K+1}. The point is X_{K+1} where, $X_{K+1}=\theta_{K} X_{K}+\left(1-\theta_{K}\right) X_{K+1}^{*}$. The value of θ_{K} is found using a one-dimensional optimal search technique.

$$
\begin{aligned}
& f\left(X_{K+1}\right) \text { less than } f\left(X_{K}\right) \text { and, } \\
& f\left(X_{K+1}\right) \text { less than } f\left(X_{K+1}^{*}\right) .
\end{aligned}
$$

The steepest descent method works well if the computation occurs on the interior of the regions; however, if the search region is bounded $a \leq \mathrm{X} \leq \mathrm{b}$ and the gradient vector is directed out of the region, the one-dimensional search may proceed to move outside of the region. The move should terminate at the region boundary. Another difficulty arises when the gradient vector is calculated at the boundary and some components point outside the boundary. Gottfried and Weisman (4) state when this occurs, it is generally satisfactory to set these components equal to zero and search in the direction of the modified search vector. The optimal steepest-descent procedure terminates when the modified gradient vector is sufficiently small.

Although the method of steepest-descent is one of the most straightforward of all the gradient techniques, it still possesses some numerical difficulties. The number of computations required to extremize a function depends upon the degree of the function's sensitivity to changes in the independent variables. Also, the steepest descent method may "zig-zag" toward the optimum and require many steps of decreasing size as the optimum is approached.

In contrast to sequential optimization techniques, random search techniques are not based upon classical theory and can be applied to
a more general classification of optimization problems. The functions need not be continuous, differentiable, or unimodal; therefore, the rationale behind the random search technique is not mathematically sophisticated. A point within the region of interest is chosen at random and the function is evaluated. The procedure continues until n points have been evaluated. At the termination of the search, the point found yielding the best value of the function is the extreme point. Random search techniques are useful in evaluating discontinuous functions and for terminal explorations when using sequential optimization techniques. Gottfried and Weisman (4) note that random search. procedures offer a practical approach to the initial exploration of a function that may be multimodal and that their use in combination with sequential methods is often highly effective.

A Computerized Optimization Program

In order to achieve a flexible nonlinear optimization routine, a computer program that combines a random search procedure and an optimal - steepest descent algorithm was written in FORTRAN. The theoretical background for these numerical procedures employed by the program was presented in the previous section of this report. The program was designed to be a modular program consisting of a generalized main program and collection of specialized subroutines. A simplified
chart for the main program is depicted in Figure 2. The main program performs input and output activities. Specific input requirements are discussed in detail at the end of this section. Also, it conducts the random search, and monitors the sequential search procedure.

The random search segment examines a specified number (NINT) of points within the region of interest. The procedure is to determine at random a value for each bounded independent variable and evaluate a user defined objective function called FUNCTN at this point. Upon completion of this segment, a current "best" set of values for the independent variables has been found. This point is an estimate of the extremum and serves as the initial search point for the steepest - descent: algorithm.

As in the random search segment, the optimal - steepest descent segment minimizes a user defined function that is provided to the main program through the subroutine FUNCTN. Ail independent variables used by FUNC'TN have their values stored as elements of the array X. Also, system parameter values may be stored as elements of X. In this research the form of FUNCTN is the modified ECON cost model (discussed previously) consisting of 169 independent variables and parameters. Specifically, the steps taken in the optimal - steepest descent segment are as follows:
(1) At the point X evaluate numerically the partial derivatives. of FUNCTN with respect to the independent variables.

Figure 2.
Simplified Main Program Flow-Chart
(2) Normalize the vector of partial derivatives.
(3) Find a point XNEW in the direction such that the value returned by FUNCTN can be improved.
(4) Perform a one-dimensional search for the point that provides the minimum value of the objective function and lies on the line connecting X and XNEW.
(5) Continue steps 1 through 4 for a specified number (NMAX) of iterations. A complete FORTRAN listing of this program can be found in the Appendix to this report.

Example - Preliminary Results

Deciaion Variable	Initial Point	Extremum found by Random Search	Extremum found by 100 Point. Sequential Search
Total Construction Time (Days)	330	330	330
Time Between Crew			
Rotation (Days)	90	177	330
Turn Around Time for			
HLLV (Days)	14	14	14
No. of Personnel that can be carried Per			
Shuttle Flight	68	55	99
Turn Around Time for			
Shuttle (Days)	14	19	14
Fraction of Total			
Satellite Mass to be			
Assembled by Manned			
Input	. 20	.66	. 79
Total System Cont	\$69G	\$64.3G	\$60G

Variable

Description

IX	Initial random number seed - any odd integer.
KIN	Number of independent variables and parameters, i. e., total number of active \quadX array elements.

KI
Number of independent variables.
NMAX
Total number of optimal - steepest: descent iterations.

Total number of initial random search iterations.

NPRINT

X

INV PT

BNDLW

BNDUP

SCALE

Intermediate printout factor, i.e., print every NPRINT iterations.

Array of independent variables and parameters, KIN elements.

Array of the subscripts of the independent variables, KI elements. INV PT(L) indicates the location in X of the $L^{\text {th }}$ independent variable.

Array of lower bounds of the independent variables. BNDLW (INVPT(L)) is the lower bound of the $L^{\text {th }}$ independent variable.

Array of upper bounds of the independent variable with subscripts determined as in BNDLW.

Array of scaling factor for the independent variables. Scale (INVFT(L)) should posses: a value between zero and one.

The minimum improvement in the objective function that is acceptable between successive iterations for the optimal - steepest descent search to continue.

Input Data Cards

Card Type 1

Variable	Columns	Format Type
KIN		
NMAX	1.5	I
NINT	$6-10$	I
IX	$11-15$	I
NPRINT	$16-20$	I
N	$21-25$	

Card Type 2

ENUF Punched in El0.6 format.

Card Type 3

X $\quad 5$ entries per card in El 5.8 format and a total of KIN entries.

Card Type 4
KI Number of independent variables pundhed in interger format in columns 1-3.

Card Type 5
INVPT 25 entries per card in 13 format and a total of KI entries.
Card Type 6
BNDUP 5 entries per card in E15.8 format and a total of KI data entries.

Card Type 7
BNDLW 5 entries per card in El 5.8 format and a total of KI data entries.

SCALE 5 entries per card in El5.8 format and a total of KI data entries.

Program Subroutine Descriptions

NEWPT (X, XNEW, DIFF, EPS): Locates a point XNEW (J) a distance $\operatorname{EPS}(\mathrm{J}) * \operatorname{DIFF}(\mathrm{~J})$ from $X(J)$ in the direction of $\operatorname{DIFF}(J)$, the partial derivative of FUNCTN with respect to $X(J)$.

GRAD (X, XNEW, DIFF, Y): Performs a sequential search using the optimal - steepest descent method on the line joining X and XNEW. Returns to the calling routine the current estimate of the extremum (XNEW) and Y, the value of FUNCTN determined at XNEW.

POINT ($\mathrm{X}, \mathrm{X} 1, \mathrm{D}, \mathrm{XO}$): Determines a point (XO) that lies on the line joining the points X and $X I . D(O$ less than D less than 1) and provides a means of locating the point.

RANDU (IX, IY, YFL): Returns a random number, YFL, on the interval between zero and one. IX is the preceding "seed" number and IY is succeeding "seed" number.

INIT L: Provides a nominal upper and lower bound for all nonindependent viriables.

FUNCTN (X, DELIA, ICOL, COSTMD): This is the user defined function that is to be optimized. This subroutine operates with two options.

Option 1-1COi equals 0 . The function is evaluated at the point defined by the array X and the value is returned to the calling routine as COSTMD.

Option 2-ICOL greater than 0 . The function is evaluated at the point $\mathrm{X}(1), \mathrm{X}(2), \ldots, \mathrm{X}(\mathrm{ICOL}-1), \mathrm{X}(\mathrm{ICOL})+$ DELTA, $\mathrm{X}(\mathrm{ICOL}+$ 1), and the value is ret"rned by COSTMD. This option allows th, user to numerically evaluate partial derivatives of FUNCTN with respect to the independert variable represented in array location ICOL.

As a result of this research, the following can be concluded:
(1) A systems model describing the transportation and assembly requirements for the construction of a Satellite Power System can take the form of a multidimensional cost function consisting of bounded decision variables.
(2) The characteristics of the decision variables at a 'point design" can be analyzed by evaluating the partial derivatives. This information is one method of determining the significant variables and can provide valuable information to system planners and designers.
(3) The controllable variables can be adjusted within the appropriate bounds such that the total system cost can be minimized using a general computerized routine that was written to minimize a nonlinear function in the presence of bounded variables. The procedure uses random and sequential search methods.

It is recommended that future research be directed toward correlation with improved cost models with special attention given to the definition of the interrelationships between system variables and parameters. Further work should include the study of the appropriate systems model using the nonlinear optimization program developed as a result of this research. A logical extension of this research would be the development of an algorithm for the optimization of a nonlinear objective function in the presence of linear constraints.

REFERENCES

1. "Space-Based Solar Power Conversion and Delivery Systems Study," ECON, April 1976.
2. "Satellite Power System," MSF.C Status Report, July 1976.
3. Couvant, R., Differential and Integral Calculus, Volumns I and II, Wiley-Interscience, New York, 1936.
4. Gottfried, Byron S. and Weisman, Joel, Introduction to Optimization Theory, Printice-Hall, Englewood Cliffs, N.J., 1973.
5. Hadley, G., Nonlinear and Dynamic Programming, AddisonWesley, Reading, Mass.: 1964.
6. Taha, Hamdy A., Operations Research an Introduction, Macmillian Company, New York: 1971.
7. Kuhn, H. W. and Tucker, A. W., "Nonlinear Programming," Proceedings of Second Berkley Symposium on Mathematical Statistics and Probability, University of California Press, Berkley, 1951.
8. Wilde, D. J., Optimum Seeking Methods, Prentice Hall, Englewood Cliffs, N.J., 1964.

```
    6
        HEAU S.(NTENPId).ESESOKI
        UL 65 dud,N%
        je|nv+T(1)
        GNULW(J) E NTEMG(I)
    OS CONTINUE
cor.c
    HEA\) SO(NTEMP(IIOIEIOKI)
    UU BG I=1,NI
    JE|NvP!(!)
    SCALE(J) NTEMPII)
    &G CONIINUE
    45 funMATl2bIJI
        CALL FUNGTN(X,0,0,0,YLOW)
        mNINT 3NU,IJH,X(JHIOJHEIOKIN)
        UO IAU IEIORIN
        XAEn(I)=A(I)
    $0 Cunifinut
    C
!
    AF(NINT) 2U05.2005,2000
    6000 CLMTIHUE
    OL llS JLOUPEIORINT
    UC 12.1 !=1.K!
    \s = INVPTII!
    C4O (ALL RAINUIIX,IIHYFL)
    C45 ANと.(IS) = "NOLF(IS) *(甘NOUH(IS)-BNDLW(IS))**FL
    d<c cuNjJ!ve
        CALL FUINCTN(XNENOO:U.1,YNOW)
    *00 f(NGAI(bX,LIS,G,5X,E{S,G)
```



```
    12% YLUK = YNOW
        UC J3U IOIORIN
        X(I) a XNED(I)
    130 cUNTINUE
    135 cuntiluve
    12S CONTINUE
    C005 CONTINUE
    NCNTED
    CALL FUNCYN(X,0,0,0,YO)
    OO SS Im\,KIN
    35 x^Em(I) A(I)
    Mm|NT 3JO,(JH0X(JF)OJHWIOKIN)
    C
    35 continue
        NI =0
            NCATENCNY*)
        IF(NCNT-NMAX) 100,100.40
    100 SLMan.
    LENO =O.
    USPARM =0.
    OU 30 1=1,R!
    dS = lidvPTill
    UELTA `(GNUUP(IS)mHNULW(IS))/UELPAO
    UELTAL ( - - .00lUELTA)
    CALL FUNCTN(X.LLLTA,ISOU)
    GALL FUINCYN(X,DFLTAIOISOEI
    OIFFIISI - (D-E)/200/DELPA
    ALf(|(S)00:
```

$\stackrel{C}{C}$


```
LALL UNAD）（A，XNEWOCIFF，ZO）
br \(=1 n-Y 1\)
1F（0F－を：，UF）3n5．51，5）
D1 CULA！INUE
TLUII＝YO
NU s？J JJal．ki
is a INNDT（JJ）
C．LL HANUU（IX，IY，YYFL）
ANEA（IS）\(=\) XLOWIIS \(-(X U P(I S)-X L O W(I S))\) ©VFL
CALL FUNCTN（XPEEW00，0，0，YNOW）
LH（YIUUN－YLUW－ENUF） 530,5200526
－U a Yinum
Ur \(=2 n-Y u\)
（iu TO） 3115
526 XNEN（IS）EX（IS）．，
520 CUNTITAUE
Uu b？ 5 Ilal．5n
OU 54，JJ＝1．K！
```



```
CALL HANUU（IX，IY，YFL）
XIVEM（IS）＝XLOW（ISI •（XUP（IS）－XLOW（IS））
beo CLintiave
```



```
225 CGNTINUE
GU 14 b＂
JUS IF（NC．ITT／NPNINT＊NPAINT－NCNT） 210.2150210
615 PHINT YJONLINT，OF•YO
CS FUWHAT（SA．15．5A，E1S．O．SX，ELS．8）
＜10 It（AAS（YO－LO）－EAUF ）bUOBUOS4
34 ro \(=20\)
DU 5.3 IU ad．KIN＇
53 X（If）\(=\) XNEW（IU）
It（ACNT／NPNINTPAPAINT－NCNT） 165.100 .165
165 CONTINUE
15
420 ALIM(IS)=(1-NNLF(|S)=X(|S))=SCALE(|S)
\lambdaLl目(|S) = x(|)
Aしん(TS) = ALOW(IS)*XLTH(IS)
IF(ALTH(IS)-1.UF.-CD) 43U04JU.SOS
OCS DIFARM - UIFNHN+DIFF(IS)00<
SLR=SUMQ AOS(DIFF(ISI)
Gcin in b
@25 XLIN(IS) =(x(IS)-HNULW(IS))*SCALE(IS)
ALOA(IS) = PNDLHIIS)
AUH(IS) ALOW(IS)*XLTH(IS)
1F(xLTH(1S)=1,0E,-05) 430,4.30,5.0
OIO DIFNRM = DLFNRN&OIFF(ISIOCO
    SUMMSUM* AUS(ODFF(IS))
    ou 10 515
    30 OIFF(IS) aU.
    Sl5 LENC - LEHUOXLTMIIS)
    JO CONTINUL
    If(SUM=1.0t-05) 40,40,45
    QS CONIINUE
    JF(\angleENO-0.) 50.50.415
    &25 UIFARIA a SURT(DIFNRM)
    200 I=10K!
    IS = INVPT(I)
    UIFF(IS) O OIFFIISI/OIFNRM
    O CuntiNuE
```

1F(UIFF(15)) 420.430.4くら

```
100 CONTINUE
```



```
    200 FCNMATIJI2A.8502x,EI5.0.2A.EIS.8)I
```



```
    i70 PUGNATIGISA.EIS.0I)
        G TnJns
90 CUNTINUE
so CuNT!|NIt
c *e. nulpuT ****
    pmint l,C(1)
```



```
    AYA,&IMUPPEM HOUND,9X,IBNPAKTIAL DENIVATIVE'!
        HNINT IUNSOHCNT,YC
    1025 FUNNATI//,YX,1/IMITEAATIUN NUMEEN , $5.2X0
    ALYMOHJECTIVE FUNCTION OEIbOBI
        U0 lO I=I,AIN
        MN(AT Ib,IOX(t), BADLW(I), BNUUP(b),DIFF(I)
    45 FUNMATI/OSA,I5*&(5AOEIS.BI)
    \O CUNTINUE
        PNINT In25,NCNT:YO
GO CUNTINUE
        SICP
    -&"!
                    SCOU FONTRAN (SOUI/RTS
        SUNHNUTINE POINT(X,XIOU,XO)
        CCNNON KI,KIN,INVPT(2UU),GNUUP(200) &BNDLW(COO)
        UINENSIUN X(200), XI (200), XU(200)
        OC ln I=1,KIN
        10 xU(I) = x(1)
        DO 5 lelokl
        J=INVLT(1)
```



```
        CUNTINUE
        HE TURN
    ENU
    SUHHNUTITNE NELPNT(X,XNEW,OLFF,EFS)
    DINENSION A(200), XHKW(200), UIFF(200)
    DIMEIGSIUN EPS(ZOO)
    CCMMON KI,NIN,INIVPT(200) QBNDUP(20U) OBNDLW(%OO)
    UU 5 l=jeKl
    J=INVPT(b)
    ANEw(J) = A(J) -EPS(土) OOIFF(J)
    IF(XNEW(J)=H!INLP(J)) 15.15010
so XAEW(小) ENDUP(小)
    GC TO S
15 LFIANEW(J)=HNOLíN(J)) 200Sob
<0 XNEW(J) = UNDLW(d)
b CONTINUE
IO HETURN
    ENII
```

SU＇HOUTINE ARAO（X，ANEWOUIFPOY）

TML』の。
T1． $\mathrm{H}=1.0$
CMLL PVNCTN（X，O，O， $1, V L F T)$
CALL FUIICTN（XIJEMOOQUOLOYNT）
A6E10U
TMLIEIHN＝AL／1．6I＇θ
$1 \mathrm{HNH} \mid=T \mathrm{HL}_{6} \times \mathrm{KL} / 1.6 ; 8$
UOS alal． 14
CALL PUINTIX，XAF，, THNI QANTI
CALL FUNCTN（XPT，0，0，10YN1）
CALL MUINTIX，XNEG，IMLIOAPTI
CALL FU．NCTN（XPT OO．OPSOYLS）
1＋（YLJ－YNI）1U010．15
$10 \quad x_{L}=1$ TNJ－THL
THN－THM！
INMI＝TML
IHLI $\mathrm{THN}^{-X L / 1.618}$
$6 C^{-10} 3$
15 XL $=1$ MH－「NLI
TML ETMLI
THLI＝THAL
In＊1＝THL＊XL／1．018
$? \quad$ CCITINUE
U0 לの I：JEIOKIN
$x d(1 n)=x(10)$
Đo CurItINUE゙
THFIN＝（TMLI＊THR1）12。
CALL PUINTIX，XNÉW，THMIN，XOI
UU 55 IUajokIN
XLEW（IU）$\times 0$（10）
y．5 CCNTINUE
CALL FUNCTN（XNEWOOEOOOY）
HETUAN
EnU
3200 FONTRAN $(3.0 ̣) / A R T S$
SUMANUTINE RANDU（IXOIVOYFLI
IY＝IXe35567
IF（iY） $5,10.10$
IY $=I Y \bullet 8348607$－ 1
10
YFL \quad IY
YFL YFL／4380008．
IX IY
RE TURN
ENO

SUIHAUTINE FUNCIA (X, UELTA,ICOL, CUSTMO)

OIMENSIUN alzool

IF (ICUL) 100.100.110

| 6 | |
| :--- | :--- | :--- | :--- |
| i | |

＂m＂


```
X(*&) - N M UNITS E NUMUEN OF MLLV UNTTS ALEUINED FOR
            IME CONSINUCTION OF ONE SSPS
X(45) - T M TUNN - TUNN ANOUND IIML FGH EALM MLLV UNIT (DAYS)
X(*6) - N SMUTTLE = TOTAL NUMELK UF SHUTTLE HLIGNTS
x(\oplus7) - A LEC = TOIAL NUMOER UF LUẄ-FAHTM UHHIT PERSONNELL
X(4A) - A UCO = TOIAL NUMUER UF LLU PERSONNEL
X(*Q) - F SHUTTLE - NUMUEN OF HLNSUNNFL TMAT CAN AE
    CAHHIEU PER SKUTTLE FLIUHT
X(PO) - A S UNITS a TOTAL NUMAEN OF SNUTTLES ACRUYRED
X(כI) - S TUNN = TUNN ANOUNU TIME OF EACN SMUTTLE (DAYS)
A(\2) - MANNLUU = IOTAL MASS OF \ATFLLJTE IV NE.
    CONSTKUCIEN BY UN=UNHIT MERSONNEL (KG)
A(`3) - 林A P PEHLENTAGE UF TUTAL SATELISIE MASS TO BE
    ASSEMBLEU HY MAN INPUT
X(54) - R MANNEU E NATE OF MANNEU ASSEMELY (KG/NANODAY)
&(b5) - T MANNEU = TOTAL MANOUAYS UF CONSINUCTION TIME
A(כG) - FS NUMUEN CF SMJFTS PE゙N DAY
A(כ7) - F M FACTUN OF PNUDUCTIVIIY ACGOUNI FOA
    OPERATIONS IN SPACL
    (PROUUCTIVE TIML/ IUTAL WORK IIMEI
A(כA) - C HLLV (甘IG C) = IOTAL COST OF MLLV ACTIVITY
X(כQ) - C HLLV & CUS) PLR HLLVV HLIGNT (OPLNATIONS)
X(O|) - C H UNIT E COST PLN HLLV UNIT
X(O1) - C SHUTTLE (HIGC) = TOTAL COST OF SHUTTLE ACTIVITY
A(OZ) - C SNUTTLE - CUST NER SHUTILE FLJGHI (ONERATIONS)
X(03) - CS UNIT - COST PER SNUTTLE UNIT
X ( 0 4 ) ~ C ~ L L C ~ E ~ T O I A L ~ L O W = ~ E A N T H ~ U N H I T ~ L A U N G N ~ C O S T ~
```

A(05) - C UMAE $=$ TUTAL COST UF UNMANNFD ASSENGLY EQUOPMENT
A(06) - VALUE NOT USEU
$X(07)$ - CPAB $=$ UNIT COST OF FAUHILATTON MUUULE (S)

$X(09)$ - DPAU = UESIGN LIFE UF. FAUKICATION PODULE (DAYS)
$X^{\prime}(10)$ - C ItLE $=$ UNIT CUSI OF TELEUPERAIOK (S)
x(11) - A TELE = NUMHER OF TELEUHEKATONS
X(I2) - D TELE E ULSIGN LIFE UP TELEOPENAIUM (I)AYS)
X(I3) - C AE PKUP = SPELIPIC COST UF ASSEMOLY LOUIMENT
PKOPELLENT (S/ KG)
$\boldsymbol{x}\left(\mathbf{I}_{4}\right)$ - C TUG E UNIT COST OF LEU SUPPANI IU(S)
X(15) - A TUG A TOIAL NUMUER OF SUPPORT TUUS
X(16) - D TUG DESIGNLIPE OF LEO SUPPURT IUG (S)
A(16) - C (6NL OP COST PLA GHPUNU OPFRATUN (S)
(\subset OR. TELEOPEHATORS)
X(78) - F SHD © NUMUER OF SHLFTS FUR GHCUIVN OPEAATOKS
X(19$)$ - CMAE TOIAL COST OF MANNED ASSEMBLY EQUIPMENT (S)
$X(甘 O)$ - CEVA $=$ UNIT COST OF EVA EUUTPMCNT (S)
X(BI) - FEVA - FALION TO ACCOUNT YON WHEIREM UR NOT EVA UNITS
MUST UE IAILONEU TO INUIVIIDUALS UH CAN BE
USEU NEPETIIIVELY ANU FUN HCW LUNG
$X(12)$ C MANIP = UNII COSI UF MANNED MANIPLLATOR (S)
$X(03)=A$ MANIP TUTAL NUNHEK UF MANAEL MANIPULATONS
(UA): D MANIP = UESIGN LIFL FOK MANAEL MANIPULATON
X(*5) : F MANIP = PACIOH TO ACCUUIVI FCH MANIPULATCH DOLNTIME
(I) E) THE PLRCENTAGE OF TIME IHE UNITS AHE
AVAILABLE)
$X(B C)=M$ MANIF $=$ MASS OF A SINGLE MANNED MANIPULATON (KG)
$X(B 7)$ - A LLO S/S TOTAL NUMELH UF LEO SHALE STATIONS
$X(88)$ - LEO S/S E NLMEEK OF HENSUNNEL THAI CAN HE MOUSEO IN
EACM STAIION
$X(\cup Q)$ - LEO S/S DESIGN LIFE OF A LEU SVACE STATION (OAYS)
X(VO) - CLEO S/S UNIT COST UF LEO SPACE STATION (S)
XiYil - CGEO S/S UNIT COST OF UEO SPACE STATION (S)
M(Y̌) - LEO.SIS ... MASS_UFA SINULELEO SIATION (KG)

X(113) - \boldsymbol{r} HEMOTE $=$ TOTAL MASS OF BATELLITE TU BE CONSTAUCTED BY HEMOTE CUNSTHUCIION
$x(114)$ - F REMUTE $=$ RATE UF HEMOTE CONTHOLLED ASSEMBLY (AG/ MACHINE UAY)
X(125) - T REMOTE - TOTAL MACHINE UAYS OF CUNSTRUCTION TIME
X(116) - FELEE AV $=$ FACTUR 10 ACGOUNT FOK UOWNTIME OF TELEOPEHATONS
$X(117)$ - FTEFACIOR TO ACCOUNT FOR PENCENTAGL OF TIME THAT TELEOPEHATONS CAN UE UUING USEFUL
$X(1 / A)$ - FFAB a FACTOR TU ACCOUNT FOR FABMICATION MODULE DOWNTIME
$X(119)$ - R FAB $=$ HATE OF FARHICATIUN NOLULES (KG/OAYS)
$x(120)$ - $\mathrm{NA}=\mathrm{MASS}$ OF A SINGLE YARQICATIUN MODULE (KG)
$x(121)$ - N TELE MASS OF A SINGLE TELEUPENATON
x(122) - N TUG - MASS OF A SINGLE LFO SIPPMUNT TUO (KG)
x(123) - NEVA - MASS OF A SINGLE EVA UNIT (KG)
$X(124)$ - F EVA FACIOH TO ACCUUNT FÜ WHETHN ON NOT EVA UN\&TS MUST HE IAILOHEU TO INDIVIDUALS
$X(125)=C F$ CUNTIGENCY PACTUH
$X(126)$ - F OEG $=F A C T O R$ TU ACCOUNT FOR GLANKET
UEGHAUATIUN DURING UHEITAL TRANSPEN
$X(12.7)$ - C ANT $=$ TUTAL PRUCUHEMENT. COST OF THANSIAITIING ANIENNA (\$)
$X(128)-C$ PO ESPELIFIC CUST UF ANTENAA PUWEA DISTKIGUIION (S / KW)
$X(179)-C P C=$ SPLCIFIC CUST OF PHASF COIVIHOL (S/KW)
$x(130)$ - C WG = SPELIFIC COSI OF WAVEGUIDE (S/Kw)
X(131) - C OC-HF = SPECIFIC CUST UR OC-NF LCNVEHTOHS (S/KW)
$X(132)=C$ ST - SPECIFIC CUST OF ANTENAA SIMUCTURE $15 / \mathrm{KM}$)
$X(133)$ - C SAT a TUTAL PRUCUKEMENT COST OF AN OPEHATIUNAL SATELLITE (b)
$X(134)$ - C SAH = SHECIFIC COST OF SOLAK AKNAY GLANKET (S/KMeez)
$X(135)=C S A C=S H E C I F I C$ COST OF SOLAR CUNCENTRATOK (S/KMe•2)
$X(136)$ - C STt - SHECIFIC COST OF CONOUCTING STRUCTURE (S/KO)
X(137) - C STNC = SHECIFIC COST OF NON - CUNUUCTINO STRUCTUNE ($\$ / K O$)
X(136) - C STCM = SPECIFIC CUST OF CEATHAL MAST (S/KO)
A(139) - C MISC BHECIFIC CUST OF MISCELLANEOUS LUUIPIAENI $\operatorname{IS/KOI}$
$X(140)$ - C GAD STAI E TOTAL PHOCUNEMEAT CUST OF THE OHOUND STATION (S)
XI!AI) - C WE = SPECIFIS COST OF WEAL_ESTAIE ANO SITE
A1J39) - MISC SHETHI ISTKOI

- : PNEPAHATION (B/KW)
X(142) - C SINUCT - SPECIPIC CUST UF RECTENAA
-
-

$X(143)$ - C $N F=U C$ - SPLCIFIC CUST UF HF-UC LONVLATEAS (SAKN) -
$X(164)$ - SMECIFIC CUST UF POWEH INIENFACE IS/KWI
X 1145% - C PG S SHECIFIC CUST UF HNASE HNUNI CONTAOL (S/KM) -
-
-

K(147), A H GKEA OF SOLAR BLANXET (KN © C)
\bullet
\bullet ・ー
\bullet.
-
X(148) TOTAL HASS OF THL DC=HF CUNVFHIENS (KU)
X $(149)^{\circ}$ - F PONEH OUTPUT AT THE NECTENNA BUSHAR (KN) OQ
$X(149)^{\circ}$ - \quad PONEK OUTPUT AT THE NECTENNA BLSHAR (KN) -
$x(150) 1$ - TUG TAL MASS OF THE
ג(151): SAB TOTAL MASS OF TME SOLAN ULANKET (KG)
$X(1521$ - $\triangle A N T-I N T$ IOTAL MASS OF THE ANTEANA INTENFACE
X (153) - AK © ANEA OF SOLAR CONCENTRATLR AS SEEN UY THE SUN 1 -©
A(154) F PCE TUTAL MASS OF TNE PNASE CUNTMOL ELECTAONICS IKO*O
$X(155)$ - ANT - TUTAL MASS UF IHL ANTLANA -

- X(156) - MISC - TOTAL MASS OF MISCELLANLULS COMPONENTS -
A(157) EETA PENCENTAGL OF TUTAL SATELLITE MASS TO BE e
(153) ASSEMELEU HY MAN INPUT TUTAL MASS UF THE SOLAN CUNCENTRATON) *
(150) - - SAC - TUTAL mass ur the Solan cuncentation)
A $(159)-$ STC TUIAL MASS UF THE CONDUCTINO STRUCTURE (KO)
$X(160)-$ STNC IOTAL MASS OF THE NON-CUNUUCICTING STHUCTURE
$X(160)$ - STNC - TOTAL MASS OF THE NON-CUNUUCICTING STAUCTURE
X(161) - STCM IOTAL MASS OF THE CENTRAL MAST (KG)
X(162) A MW MICNOWAVE EFFICIENLY
ג(163) A UC-HF UC-HF CUNVENTENEFFICIENGY - -
X(164) - A PC PHASE CONIKOL EFFICIEACY
A (165) - A ION PROK IUNUSPHEKIC PROPAGAIIUN EFFICIENCY
$X(166)$ A ATM PRON ATMUSPHERIC PROPAGAIION \&FFICIENCY
X(16b) - A ATM PRUN - ATMUSPKERIC PROPAGATION \&FFICIENCY
$x(167)$ - A HC E HEAM COLLECTION EFFICIENCY
$X(168)$ - A RF-DC E KF-DC CONVERTEN EFFICIEACY
$X(169) N$ ELCT PU E NECTENNA HOWER UISTRIHUIION EFFICIENCY

$1102=x(1 C O L)$
XICOL $)$ A(ICOL) - DELTA.
continue
ECON HOUTINE TC SI2E ONE SPS
A(162) 10
OC $10^{10163,169^{\circ}}$
$x(162)=x(162) 0 x(1)$
CONTINUE
10
\cdot
-

\bullet •
-

- \quad (155) F ANT TUTAL MASS UF THE ANTEANA
- •
\bullet－
- -
- •
-e
\bullet •
- •
-帾
\bullet ••
-•
\bullet
-

c
$x(155)=x(146) \cdot x(148) \times x(150) \cdot x(152) \bullet A(154)$
6
$x(15)=x(151) \times x(158) \times x(159) \circ x(100) \circ x(161) \div x(256) \circ x(155)$
$x(15)=x(15) \times x(125)$
C
c
$x(52)-x(53) \oplus x(15)$
$x(113)-x(15)$ (1.- $-x(53))$
$x(55)=x(52) / x(54)$
c
$A(4)-(x(55) \cdot x(50)) /(A(8) \bullet x(57))$
コロג (47)
4i47) Jol.

```
x(115) =x(113)/X(1144)
```



```
    x(83) - x(97)/A(56)0x(05)
    x(07)=x(07)/x(8f)
    jax(A)! -1.
    \(*7) - J
```

G
!
!
¢
c
!
c
6
5
c
6
c
c
$x(13)=(x(14) \circ x(15)) \bullet x(10) \bullet(x(120)-10) /(x(10)-(x(10) 0) \circ)$
A*(1. $-x(16)$)
$!$
$\stackrel{+}{6}$
c
$x(17)=x(12) \bullet(1,-x(16)) / x(16)$
A120) $=x(7,190 . ;$
$x(<3)-x(7)=(8-/ 9$.
$x(18)=x(2 y) \bullet x(20) / x(21) \odot x(22) \bullet x(23) / x(24) \div x(25) \odot x(13) / x(26)$
$x(30)=.020 x(1) \%)$
$\therefore(27)=x(20) \cdot x(29) \cdot x(30) \cdot x(31)$
$x(37)=.0450 x(35)$
$x(-2)=x(35) \circ x(34) \bullet x(35) \bullet x(36) \circ x(37)$

$x(40)=x(21) \bullet x(32) \bullet x(34) \bullet x(15)$

$x(44)=x(01)+x(45) / x(\theta)$
$x(40)-(x(4) 7) \times x(08)) \times x(\theta) / x(9) / \times(49)$
$x(50)=x(9 G) \dot{\infty}(51) / x(8)$

```
6
!
C
5
    A(65) - x(07)0210日)02(0)/2(60)
```



```
    A(v6) - x(05).&(79)
```



```
S
    SuN aN.
    OU 150 j-1<A.132
    SUM - SUM0A(I)
    lSO CONTINUE
```



```
c
    x(133) - x(134)0x(147)*x(135)0x(153)\bullet{(13010z(150)0
```



```
G
    SUM 00.
    DO 155 101910145
    SUN - SUAOAITI
15s. continue
    A(140) ब SUFAg(140)
5
G
    x(112) - x(64) - RI!?! 02(00)0 R(t391 0R12401
    costmo - alll2)
    yFIICOL) İSilseolzo
    120 X(ICOL) - 6.
119. RETURN
    tmo
```

 SUUROUTINE INRITAL

DO S IEIORIN
GNUUPIII $\quad 100 E 180$
BNULIS OOS.
CONIINUE
he tuan
tho

