
 

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap 

 

This paper is made available online in accordance with 
publisher policies. Please scroll down to view the document 
itself. Please refer to the repository record for this item and our 
policy information available from the repository home page for 
further information.  

To see the final version of this paper please visit the publisher’s website. 
Access to the published version may require a subscription. 

Author(s):  Marina Cole, James A. Covington, Julian W. Gardner 

Article Title: Combined electronic nose and tongue for a flavour 
sensing system 
Year of publication: 2011 
Link to published article:  
http://dx.doi.org/10.1016/j.snb.2011.02.049 
Publisher statement:  NOTICE: this is the author’s version of a work 
that was accepted for publication in Sensors and Actuators B: 
Chemical. Changes resulting from the publishing process, such as 
peer review, editing, corrections, structural formatting, and other quality 
control mechanisms may not be reflected in this document. Changes 
may have been made to this work since it was submitted for 
publication. A definitive version was subsequently published in 
Sensors and Actuators B: Chemical,  [VOL. 153, ISSUE 2, August 
2011. DOI: 10.1016/j.snb.2011.02.049 

 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/1385945?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/wrap


1 

 

Combined electronic nose and tongue for a flavour sensing system 
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SUMMARY 

We present a novel, smart sensing system developed for the flavour analysis of 

liquids. The system comprises both a so-called “electronic tongue” based on shear 

horizontal surface acoustic wave (SH-SAW) sensors analysing the liquid phase and a 

so-called “electronic nose” based on chemFET sensors analysing the gaseous phase. 

Flavour is generally understood to be the overall experience from the combination of 

oral and nasal stimulation and is principally derived from a combination of the human 

senses of taste (gustation) and smell (olfaction). Thus, by combining two types of 

microsensors, an artificial flavour sensing system has been developed. Initial tests 

conducted with different liquid samples, i.e. water, orange juice and milk (of different 

fat content), resulted in 100% discrimination using principal components analysis; 

although it was found that there was little contribution from the electronic nose. 

Therefore further flavour experiments were designed to demonstrate the potential of 

the combined electronic nose/tongue flavour system. Consequently, experiments were 

conducted on low vapour pressure taste-biased solutions and high vapour pressure, 

smell-biased solutions. Only the combined flavour analysis system could achieve 

100% discrimination between all the different liquids. We believe that this is the first 

report of a SAW-based analysis system that determines flavour through the 

combination of both liquid and headspace analysis. 

Key words: Electronic nose, electronic tongue, Flavour system, chemFET, SH-SAW 
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1.  INTRODUCTION 

A challenging problem in the food and beverage processing industries is how to 

ensure the quality of products. This is achieved by spending significant time and 

effort on assessing the flavour of samples. Traditionally, panels of trained experts 

evaluate quality parameters; however this suffers from a number of drawbacks. For 

example, sensory panels are time consuming, expensive, discrepancies can occur due 

to human fatigue or stress and clearly cannot be used for online measurements. Thus 

the development of alternative methods to organoleptic panels for the objective 

assessment of food products, in a reliable and cost-effective manner, is highly 

desirable. Consequently, the combination of artificial sensors (for taste and smell) has 

the potential to reduce the need for flavour panels, since their outcome can be 

correlated to a human-based sensory experience. Our main aim is to demonstrate the 

ability of the combined SAW-based system to discriminate between different liquid 

samples that cannot easily be identified by an electronic nose or tongue individually. 

Although we refer to this instrumentation as a flavour sensing system, we do 

acknowledge that the sensors measurements are, in fact, indirect and thus correlated to 

perceived flavour. However we can think of no better term than flavour sensor even 

when we are measuring physical properties rather than biological molecules. 

 

2. OPERATING PRINCIPLES AND DESIGN 

The electronic tongue employed here is based on surface acoustic wave (SAW) 

technology. In general, acoustic wave microsensors detect different physical 

properties, such as mass, density, conductivity, and viscosity of liquids and gases, and 

offer the benefits of real-time electronic read-out, small size, robustness and low unit 
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cost.  In particular, SAW devices are of considerable interest for sensing applications 

in gaseous and/or liquid environments.   

 

When a SAW propagates along a piezoelectric crystal surface, its interaction with an 

adjacent gas or liquid results in a change of its propagation characteristics.  Thus, the 

determination of liquid or gaseous properties can be achieved by measuring simple 

changes in the velocity, frequency, amplitude or phase of the acoustic wave.  Here 

shear horizontal surface acoustic wave (SH-SAW) devices are employed for the 

electronic tongue component of the system for analyzing the liquid samples. The 

devices comprise a dual 2-port delay-line interdigital transducer (IDT) configuration. 

The configuration utilised allows measurement of both mechanical and electrical 

characteristics of the liquid under test to discriminate between different samples and 

also to determine specific properties of the liquids.  Unlike electronic tongue devices 

reported to date [1-5], the devices we have used are based on measuring key physical 

parameters rather than chemical principles. The main advantage of our SH-SAW 

devices is that it can measure different properties of a liquid without the need for a 

taste-sensitive selective membrane. This in turn increases the lifetime and durability 

of the resultant devices, albeit with a loss of specificity and, in some applications, 

sensitivity.   

 

Electronic noses, in general, are based on an array of non-selective sensors with 

overlapping sensitivities. They are not designed to identify specific chemical 

components within an odour/sample, but the aroma.  A single sensor within an array 

responds to the combined volumes of a number of chemicals, and so a small number 

of chemical sensors, in an array, can create a chemical fingerprint of an odour. In 
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electronic nose instruments there are several different sensing technologies, based 

upon a number of different operating principles, for example metal oxide, conducting 

polymer, acoustic wave, field-effect, and electrochemical gas sensors. Here, we have 

employed chemFET sensors with a conducting polymer sensing layer as the gate 

material. The basic configuration involves the metal (or polysilicon) gate of the FET 

being replaced with a conducting polymer gas-sensitive layer. These conducting 

polymers are a combination of an insulating polymer and carbon black particles with 

diameters of some tens of nanometres. The carbon endows electrical conduction to the 

resultant mix.  This layer is deposited directly on top of the gate oxide and the sensor 

response is related predominantly to a change in the work function between the 

polymer and the semiconductor.  This in turn modulates the threshold voltage of the 

MOSFET. It is believed that the change of work function within the polymer is due to 

either a swelling effect, where the polymer expands or contracts thus altering the 

average work function, or to a change in the band structure of the polymer from the 

interaction between the polymer and the test vapour.  

 

2.1 ELECTRONIC NOSE CHEMICAL SENSORS 

The chemFET sensors were designed and fabricated in collaboration between the 

Institute of Microtechnology, University of Neuchatel (Switzerland) and the 

University of Warwick (UK). The overall devices were designed as arrays of four 

enhanced n-type MOSFET sensors. The individual devices were constructed within p-

wells on an n-type lightly doped silicon substrate to minimise interference between 

adjacent sensors. The devices have a common gate / drain configuration and thus are 

operated in the saturated region. The devices were designed with channel dimensions 

385 m  10 m. Aluminium tracks were used to contact the drain, source and gate, 
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though Au was used as the sensing electrode (i.e. the gate connection of the chemFET 

sensor) for improved ohmic connection to the sensing layer and better chemical 

inertness. Accessibility to the Au gate was achieved by etching through the silicon 

nitride passivation layer and subsequent oxide layers. In the sensing chemFETs, the 

gold was also etched exposing the gate oxide below. Figure 1 shows a cross-section 

and top view of an individual sensor, showing particularly the common gate and drain 

and the active polymer material in contact with the gate oxide. The final die size of 

the device was 4 mm
2
 with pads of 300 m

2
 for electrical connection to the sensors. 

The devices were fabricated with three open gates for sensing and one closed 

(covered) for reference. The polymers were supplied by Sigma Aldrich (UK) and the 

carbon black (Black Pearls 2000) was supplied by Cabot Corporation (USA). The 

carbon nanospheres were supplied as a powder with particle sizes between 50-80 nm, 

the polymers were either in powder form or small crystals. Three different polymers 

were used in this study poly(ethylene-co-vinyl acetate), poly(styrene-co-butadiene) 

and poly(9-vinlycarbazole), mixed at a 80:20 ratio (by weight) with carbon black. The 

polymers were first dissolved in their respective solvent overnight, with the aid of a 

magnetic stirrer and at an elevated temperature (50 
o
C). Next, carbon black was added 

and the mixture sonicated for 10 minutes using a flask shaker (Griffin and George, 

UK). The mixture was then deposited across the sensor electrodes using an airbrush 

(HP-BC Iwata, Japan) controlled by a micro-spraying system (RS precision liquid 

dispenser, UK), through a metal mask with a 1 mm hole. The gates were aligned to 

the mask using an X-Y stage before deposition occurred. The airbrush was held 10 to 

15 cm away from the mask and several passes were sprayed depending on the desired 

thickness (or resistance). This gave a circular coating of typically 1 mm 0.1 µm in 

diameter and 5  1 µm thick that covered the central sensing section (i.e. one film 
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covered all the chemFETs). The device was mounted in a standard 14-pin DIL 

package (Spectrum Semiconductors, USA). Figure 2 shows a photograph of a 

fabricated microsensor array which has been coated with sensing materials. 

 

The chemFETs were operated in a basic configuration with the gate and drain 

common.  This means that the relationship between the drain current IDS and the gate-

source voltage VGS is that for the saturated regime, namely 

 2TGS
On

DS
2

VV
L

CW
I 


                                   (1) 

Where W is the channel width, L is the channel length, µn is the electron mobility, Co 

is the capacitance, VT is the threshold voltage, and VGS=VDS=VGDS. 

 

The response of the chemFET is based upon by a gas-dependent shift in the work 

function of the polymer-metal gate, which in turn changes the threshold voltage of the 

transistor. The chemFET can be operated in either a constant current or a constant 

voltage mode. In the case of driving the chemFET with constant current, the change in 

gate-source voltage must be exactly equal (from equation (1)) the change in threshold 

voltage: 

TGDS VV                                    (2)  

So any chemical interactions, which affect the threshold voltage, can be monitored in 

a simple and direct manner.  

There are a number of advantages of operating the chemFET in the constant current 

rather than constant voltage mode that outweigh the smaller signal: 

(1) Unlike IDS, VGS is independent of both channel width and length and so no 

longer sensitive to geometrical errors in the CMOS process.  
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 (2) Unlike IDS, VGS is independent of device capacitance and so both the dielectric 

permittivity of the gate oxide and its thickness that can vary with CMOS process.  

 (3) Unlike IDS, VGS is not dependent upon the electron mobility which is itself 

strongly dependent upon operating temperature.  

 

It should be noted that VT still has a strong sensitivity to temperature because the 

partitioning coefficient of the analyte (i.e. solute) for the polymer (i.e. solvent) coating 

depends strongly upon the boiling point of the analyte.  Further details of the 

properties of polymer gated FET sensors are provided in references [6 and 17], such 

as their temperature sensitivity, humidity sensitivity and response to gas mixtures. 

 

2.2 ELECTRONIC TONGUE DEVICE 

The electronic tongue devices were developed utilizing shear-horizontal SAW 

sensors.  Here, the surface acoustic waves propagate along the surface of the substrate 

without coupling too strongly into the liquid, but still being perturbed by the liquid 

properties [7].  The devices were fabricated on a 36 rotated Y-cut X-propagating 

LiTaO3 (36YX.LT) 3” wafer substrate. The configuration used is one which allows 

for simultaneous measurements of both mechanical (elasto-acoustic) properties, and 

electrical (electro-acoustic) parameters of the liquid under test. This is achieved 

through a dual delay line configuration, one shorted (metalized and electrically 

shielded) and the other left free (electrically active).  This way, the shorted delay line 

measures mechanical parameters, predominantly mass loading and viscosity, whilst 

the free delay line measures in addition the permittivity and conductivity of the liquid 

under test. The electrical parameters can be indirectly related to certain taste 

properties, such as saltiness (sodium) and sourness (acetic acid) [8]. Figure 3 shows a 



8 

 

schematic of the basic arrangement of the dual delay line sensing system. The SH-

SAW propagating on the surface of 36YX.LT substrate is sustained by both atomic 

displacements and electrical potentials due to the piezoelectric effect. When the 

surface of the substrate is metalized and electrically shorted the piezoelectric potential 

becomes zero at the surface and only the atomic/particle displacements interact with 

the adjacent liquid. This phenomenon is known as mechanical perturbation (or 

mechanical interaction) and can be used to detect the mechanical properties of a 

liquid, e.g. its viscosity and density.  The theory related to mechanical perturbation of 

SH-SAW on the metalized surface was developed by Kondoh et al. [9].  In this, the 

changes in the SH-SAW were derived from Auld’s perturbation theory [10] for gases 

and extended to the liquid phase where the changes of the velocity and the attenuation 

can be expressed, and therefore measured, as 

)(
4








pippip vZvvZv

P

v

v

v


,        (3) 

)(
4








prpprp vZvvZv

P

v

k 


.      (4) 

where, k is the wave number, v the phase velocity,  the angular frequency, P the 

flow per unit width, vp the particle velocity vector, and Z the acoustic metal surface 

impedance. Also, ´ indicates a perturbed quantity and * indicates a complex conjugate 

and the subscripts r and i represent the real and imaginary parts of Z. 

 

From the above and assuming that a Newtonian fluid with a viscosity of  and density 

l is loaded on the metalized surface, by substituting the surface acoustic impedance Z 

into equations (3) and (4) we can obtain equations for viscous coupling and mass 

loading as: , 
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for viscous coupling, where, vpc is the particle velocity component of the shear 

horizontal mode. 

 

and 
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for mass loading, where,  is the Lamè constant of the film. The above assumes that 

an isotropic thin liquid film of thickness h and density  is uniformly loading the 

metalized surface and that the liquid properties do not change before and after 

perturbation. 

 

On the other hand, when the surface is free and electrically active both the particle 

displacements and electrical potentials interact with the liquid. This is an electrical 

interaction (also known as the acousto-electric interaction/perturbation) with the liquid 

that affects the velocity and/or attenuation of SH-SAW propagation and it is utilised 

in sensing the electrical properties of the liquids, e.g. the relative permittivity and 

conductivity.  By employing the perturbation theory proposed by Auld [10], the 

following acousto-electric interaction (electrical) relationships for changes in velocity 

and attenuation of the SH-wave in the presence of a liquid are achieved: 
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Here, 
2
sK  is the electromechanical coupling coefficient when the reference liquid is 

loaded on the free surface, k is the wave number, T
P  is the effective permittivity of 

the SAW crystal, r is the permittivity of the reference liquid (distilled water), r  and 

 are the permittivity and conductivity (related to loss) of the liquid.   

 

Thus we can conclude that the changes in the velocity of SH-SAW on the two delays 

lines are functions of several parameters, some of them being common for both lines: 
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where, , , ,  are the permittivity, conductivity, viscosity and density of the liquid 

under test and T the temperature common to both delay lines.  It is these physical 

parameters that are being used to measure indirectly “taste” in our so-called electronic 

tongue. 

 

The SH-SAW devices’ transmit and receive transducers (i.e. a 2-port device) were 

optimally designed to have 28 finger pairs with 17 µm width of electrode and 17 µm 

separation between each electrode, providing. a periodicity of 68 µm. The IDT 

aperture is 2.0 mm with the IDT centre-to-centre separation of 7.5 mm and a free area 

of 2.0 mm × 1.5 mm, with overall device dimensions of 8.0 mm by 10.5 mm. The 
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feature dimentions were determined taking into consideration various constraints in 

terms of the aperture and the number of finger pairs in the IDTs, in order to achieve 

trade-offs between the low insertion loss, bandwidth and diffraction losses [11]. The 

devices were fabricated on a 3 inch LiTaO3 wafer with operating frequency of 

approximately 60 MHz.  

 

In order to test the sample liquids, the devices were mounted on a custom designed 

printed circuit board (PCB) below a PTFE cell that contained the liquid under test. 

The cell is 32 mm in length by 20 mm wide with a central reservoir of 6.8 mm × 2.5 

mm × 8.0 mm and a volume of approximately 136 l. The liquid cell is positioned 

accurately over the sensing area between the IDTs with the aid of guiding pins that fit 

into holes in the PCB. The cell rests on the device without any sealant.  This enables 

easy removal of the cell to clean the device and yet holds the liquid without leakage. 

The top of the liquid cell was machined with a depression to allow the 14 pin DIL 

package to fit in. The package is mounted face down to detect the sample headspace 

(pins point up to allow socket connection to control electronics interface). The device 

was clamped down using a brass fitting across the back of the 14 pin DIL package 

with bolts on either end. A photograph of the system is shown in Figure 4(a) [12] and 

a schematic cross-section through its middle provided in Figure 4(b). 

 

3. MEASUREMENT SETUP 

The chemFET sensor array was controlled using an instrument that consists of custom 

interface electronics, a National Instruments card and a software control system 

written in LabVIEW
TM

. The interface provides a constant current of 10 µA to the 

sensors and records the resultant voltage drop over the sensors. For the SH-SAW 
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devices a vector voltmeter / signal generator setup was used. The set-up includes a 

signal generator (HP 8648C), the dual SH-SAW sensor and a vector voltmeter (HP 

8505A). The experimental procedure involved the measurement of both the phase 

velocity and attenuation of the SH-SAW signals propagating on the delay lines of the 

sensor. Using this setup, an electrical signal is fed from the signal generator to the 

input IDTs; the amplitude ratio A and phase difference  between the input and 

output signals of each delay line and between the output signals of the sensing and 

reference delay lines were monitored by the vector voltmeter. The fractional velocity 

shift v/v and attenuation change /k of the SH-SAW can be derived from the phase 

difference and the amplitude ratio, respectively. 

 

All the experiments were performed under a controlled temperature using a 

commercial Dri-Bloc™ heater. The sensors were left for 60 minutes before testing at 

a constant temperature of 30  0.1
o
C at 50% r.h. A sensor baseline for the chemFET 

sensors was acquired for reference purposes before the injection of the liquid sample.  

After injection of the liquid (60 l) into the micro-cell, using a micro-pipette (Gilson 

Pipetman P200), the sensor signals were monitored for a period of 15 min. The 

response of the chemFET sensors was defined as the difference between the baseline 

signal and the value recorded after 15 minutes of exposure to the liquid. The liquid 

cell and the SH-SAW devices were cleaned and dried after each measurement using 

de-ionised water and the sensors were allowed to stabilise to the control environment 

before conducting the next measurement. These experiments were repeated 5 times 

for each sample and repeated for two different chemFET sensors each sensor chip 

having a different polymer. 
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4. EXPERIMENTAL RESULTS 

The initial measurements were conducted to discriminate between different liquid 

samples (i.e. de-ionised (DI) water, orange juice and milk). Results showing the 

discrimination of different liquids using principal components analysis (PCA) for the 

e-tongue are presented in Figure 5. The amplitude ratio and phase difference on each 

of the delay lines (electrically shorted and free) were used as the four parameters for 

the principal components analysis. In this case (and in all subsequent analyses), the 

original data-set was autoscaled to remove the influence of the magnitude of the 

sensor response. The PCA plot given in Figure 5, as expected, shows excellent spatial 

separation of the three very low vapour pressure liquids in linear multivariate space. 

The tight clusters hide the fact that 5 replicate measurements were made (in 

randomised sampling order) for each of the liquid samples. Previous work on SAW 

sensors has been carried out that investigated more similar types of drinks and 100% 

discrimination was observed but with higher within-group variance [13].  

 

Figure 6 shows the transient response of a chemFET sensor to the three liquids, and 

although a visual difference can be noticed in the responses in the plot, it is actually 

very small (~ 10 µV). The parameters used were the change in gate/drain-source 

voltage ( GDSV ) of each of the four chemFETs along with the attenuation and phase 

data for each delay line of the SH-SAW devices, as mentioned earlier. PCA analysis 

again revealed good multivariate separation, but with reduced clustering compared to 

electronic tongue data alone.  

 

Further experiments were performed on milk samples with different fat content, 

(whole milk with 4% fat, semi-skimmed with 2% fat and skimmed milk with no fat). 
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The same procedure was followed for these experiments as described earlier. Results, 

showing the discrimination of different milk samples, using principal components 

analysis for the SH-SAW device, are presented in Figure 7a. This plot again shows 

very good discrimination and tight clustering of the different milks samples.  Some 

discrimination can also be observed from the response of the chemFET sensors, 

however not as promising as in the case of SH-SAW devices. The transient response 

of the one of the chemFET sensors is presented in Figure 8, with the combined PCA 

plot shown in Figure 7b. Here, again the clustering is not as tight compared to the SH-

SAW devices alone - as was the case with the different liquids (water, orange juice 

and milk). Thus from the results of the two sets of experiments mentioned above, it 

can be concluded that the chemFET based electronic nose does not add much to the 

discriminating power of the system for these particular samples. This was to be 

expected as the liquids used in the experiments have a very low vapour pressure and 

thus do not generate significant headspaces (i.e. very low vapour concentrations) for 

the electronic nose to detect.  The small variations in the responses of the electronic 

nose devices could be due to the difference in water content in the different samples. 

 

Following the results gathered from the above experiments it was decided to perform 

experiments using a number of samples that are taste-biased and a number that are 

smell-biased. It was anticipated that these experiments would give encouraging results 

to discriminate between complex solutions that contain substances that may not be 

detected by the electronic tongue but would be picked up by the nose and vice versa. 

The details of the different synthetic samples selected for these experiments and 

results obtained are discussed in the following section.  
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Experiments with nose/tongue biased samples 

Knowing that the SH-SAW electronic tongue devices respond well to ionic solutions 

(with very low vapour pressure) three different taste solutions were chosen along with 

two organic solutions (high vapour pressure) that are known to give good response 

from the chemFET devices. The solutions with their respective concentrations are 

given in Table 1 below. 

 

Distilled DI water was used as the reference liquid sample and all the solutions were 

prepared or diluted (in the case of the organic samples) using the DI water. The same 

setup was used as for the previous experiments within the same environmental 

conditions. Both the chemFET and SH-SAW sensors were controlled at 30   0.1°C 

using a Dri-Bloc™ heater and at approximately 34% r.h. As before a sensor baseline 

for the chemFET devices was acquired before the injection of the liquid sample for 

reference purposes. The electronic nose device used for this experiment was coated 

with composite polymer - poly(ethylene-co-vinyl acetate). After injection of the liquid 

(60 l) into the micro-cell using the micro-pipette the measurements were recorded 

for 15 min. The liquid cell and the SH-SAW devices were cleaned and dried after 

each measurement, using DI water, and the sensors were allowed to stabilise to the 

control environment for approximately 15 min before conducting the next 

measurement.  

 Five replicate measurements were performed on each analyte and the results 

analysed using principal components analysis. As before, the four parameters 

(amplitude ratio and phase difference from both delay-lines) were used for the 

analysis of the electronic tongue data. For the electronic nose devices the voltage 

differences for each of the four chemFETs were used to describe the raw sensor 
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response. (N.b. as stated above the data-set was autoscaled to enable each sensor to be 

put on an equal footing).  

 Figure 9 shows a 3D principal components plot for the electronic tongue data 

from the five samples (see Table 1) with DI water added as the reference liquid. Three 

components were used here, as a 2D analysis showed an overlap between DI water 

and estery samples. It was expected that the tongue would not respond very well to 

the high vapour pressure organic solutions of relatively low concentrations (1000 

ppm) and this explains the estery solution clustering close to DI water. However, the 

tongue still shows good separation of the ethery compound. For more information 

about the concentration dependence of these SAW sensors and their ability to 

discriminate between liquids, please see references [16]. 

 

Figure 10 gives four plots of the voltage )( GDSV against time for the five different 

flavours and DI water, for each of the four chemFETs in the electronic nose device. 

(Note: the time series plots are not given for the SAW sensors because they respond 

almost instantaneously to the liquid (milliseconds) and the sampling rate of the 

frequency measurement is 1 second.) The plots for all four chemFETs show clear 

differences and large responses for both ethanol and ethyl acetate that have a high 

vapour pressure (the fourth sensor has a solid Au gate, thus giving a much smaller 

response). Conversely, DI water, sucrose, NaCl and quinine responses were very 

small with small differences in the voltage change and hence almost no 

discrimination. 2-D PCA plot for the electronic nose voltage difference data could not 

separate all the flavours as demonstrated by the transient responses. Ethanol and ethyl 

acetate are clearly separated from the rest of the analytes, as expected, due to their 

high vapour pressure, hence easily sensed by the electronic nose. The effect of 
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introducing a third principal component to improve the separation is demonstrated in 

a 3-D PCA plot (see Figure 11). It can be concluded that the electronic nose could not 

discriminate between all the flavours, however it clearly separates the high vapour 

pressure ethereal and estery samples. For more information about the behaviour of 

these polymer FET devices, such as temperature and humidity dependence, please see 

reference [17]. 

 

Finally, in order to determine the discriminating power of the combined system, PCA 

was performed on normalised electronic nose and tongue data together. Figure 12 

shows the 3D PCA analysis of the combined nose/tongue data where good separation 

was achieved using a third principal component. From a plot of the sensor loadings 

given in Figure 13, the relative weighting of the e-nose and e-tongue can be 

determined. The electronic nose did not separate out the low vapour pressure flavours 

and water however it gave very distinct responses to the high vapour pressure estery 

and ethereal compounds (n.b. sensor loadings were smaller and three FET devices 

were close together). The electronic tongue did not respond very well to the high 

vapour pressure organic liquids, however it gave very good separation between low 

vapour pressure samples (n.b. SAW sensor loadings were better distributed than 

FETs). Thus a combination of the responses from both the nose and tongue devices, 

as expected, gave total separation between all the samples demonstrating promising 

application of this combined system in the flavour analysis of liquids.  

 

5. Conclusions  

A combined tongue/nose flavour system comprising of the SH-SAW liquid sensors 

and the chemFET gas sensors has been developed and thus differs from a previously 
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reported system using electrochemical cells and metal oxide gas sensors [14,15]. The 

uncoated SAW devices should not only be more robust than electrochemical sensors 

but also respond almost instantaneously. Moreover, polymer coated gas sensors are 

attractive in that they operate at room temperature (low-power) and do not suffer 

sensitivity to common headspace gases such as oxygen, methane, and hydrogen.  

 

Results from initial experiments performed using our combined flavour system on 

complex samples (such as milk samples with different fat content) and different 

solutions (such as water and orange juice) showed little contribution from the 

electronic nose devices. However, the use of the combined nose/tongue system was 

justified with further experiments where three taste-biased solutions with low vapour 

pressure and two organic high vapour pressure smell-biased solutions were tested 

with the system. The results of this investigation concluded that, unlike the case of 

individual devices, the combination of the electronic nose and electronic tongue 

produced 100% discrimination between all the different flavours. These results are 

encouraging and indicate the potential of the flavour sensing system to analyse 

complex solutions in the food and beverage industries where the sole use of an 

electronic tongue or electronic nose has become inadequate. Furthermore, the choice 

of polymer based FET devices and SAW devices enables room temperature operation 

and so a low-power solution for handheld, battery-operated devices.  
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FIGURES 

 

 

 
 

Figure 1: Schematic overview of chemFET sensor and configuration 

 

 

 

 

 
 

Figure 2: Photographs of uncoated and coated chemFET sensor  

 

 

 

  



22 

 

 

 

 

 

 

 

 

Figure 3: Schematic of dual-delay line SH-SAW taste sensor 

 

(a) 

 

(b) 

 

Figure 4: (a) Photograph of miniature total analysis taste system or electronic tongue 

and (b) schematic cross-section of the flavour sensing system showing the SAW 

sensor (bottom), liquid chamber (32 mm × 20 mm with a central reservoir of 

approximately 136 µl volume) and FET sensors (top). 
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Figure 5: PCA of liquids with the e-tongue showing excellent linear discrimination. 

Each cluster is made from 5 replicate samples. 

 

 

 

 

 

 

 

 

Figure 6: Response of the poly(9-vinylcarbazole) FET sensor to the different liquids 

 

  

 

Figure 7: PCA analysis of (a) electronic tongue data and (b) combined electronic nose 

and tongue to milks of different fat content. 
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Figure 8: Transient response of the poly(styrene-co-butadiene) FET sensor to milks of 

different fat content (full fat is 4%, semi-skimmed 2%, skimmed 0.3%). 

 

 

 

 

 

Figure 9: 3-D PCA plot on the attenuation and phase data of the SH-SAW sensor. 
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Figure 10: Transient responses of the 4 different ChemFETs in the array to each of the 

flavour samples 

 

 

 

Figure 11: 3-D PCA plot for the GDSV  data from the 4 chemFETs 
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Figure 12: 3-D PCA plot of the combined electronic nose/tongue data 

 

 

Figure 13: 3-D PCA plot showing the loadings of each of the 8 sensors for the first 

three PC components using the combined electronic nose/tongue data-set. 
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