8,137 research outputs found

    Radial Redshift Space Distortions

    Get PDF
    The radial component of the peculiar velocities of galaxies cause displacements in their positions in redshift space. We study the effect of the peculiar velocities on the linear redshift space two point correlation function. Our analysis takes into account the radial nature of the redshift space distortions and it highlights the limitations of the plane parallel approximation. We consider the problem of determining the value of \beta and the real space two point correlation function from the linear redshift space two point correlation function. The inversion method proposed here takes into account the radial nature of the redshift space distortions and can be applied to magnitude limited redshift surveys that have only partial sky coverage.Comment: 26 pages including 11 figures, to appear in Ap

    Recovery of the Shape of the Mass Power Spectrum from the Lyman-alpha Forest

    Full text link
    We propose a method for recovering the shape of the mass power spectrum on large scales from the transmission fluctuations of the Lyman-alpha forest, which takes into account directly redshift-space distortions. The procedure, in discretized form, involves the inversion of a triangular matrix which projects the mass power spectrum in 3-D real-space to the transmission power spectrum in 1-D redshift-space. We illustrate the method by performing a linear calculation relating the two. A method that does not take into account redshift-space anisotropy tends to underestimate the steepness of the mass power spectrum, in the case of linear distortions. The issue of the effective bias-factor for the linear distortion kernel is discussed.Comment: 18 pages, 4 figures; minor revision

    An Inversion Method for Measuring Beta in Large Redshift Surveys

    Full text link
    A precision method for determining the value of Beta= Omega_m^{0.6}/b, where b is the galaxy bias parameter, is presented. In contrast to other existing techniques that focus on estimating this quantity by measuring distortions in the redshift space galaxy-galaxy correlation function or power spectrum, this method removes the distortions by reconstructing the real space density field and determining the value of Beta that results in a symmetric signal. To remove the distortions, the method modifies the amplitudes of a Fourier plane-wave expansion of the survey data parameterized by Beta. This technique is not dependent on the small-angle/plane-parallel approximation and can make full use of large redshift survey data. It has been tested using simulations with four different cosmologies and returns the value of Beta to +/- 0.031, over a factor of two improvement over existing techniques.Comment: 16 pages including 6 figures Submitted to The Astrophysical Journa

    Using Cluster Abundances and Peculiar Velocities to Test the Gaussianity of the Cosmological Density Field

    Get PDF
    (Abridged) By comparing the frequency of typical events with that of unusual events, one can test whether the cosmological density distribution function is consistent with the normally made assumption of Gaussianity. To this end, we compare the consistency of the tail-inferred (from clusters) and measured values (from large-scale flows) of the rms level of mass fluctuations for two distribution functions: a Gaussian, and a texture (positively-skewed) PDF. Averaging the recent large-scale flow measurements, we find that observations of the rms and the tail at the 10 h^-1 Mpc scale disfavor a texture PDF at ~1.5 sigma in all cases. However, taking only the most recent measurement of the rms, that from Willick et al. (1997b), the comparison disfavors textures for low Omega_0=0.3, and disfavors Gaussian models if Omega_0=1 (again at ~1.5 sigma). Predictions for evolution of high temperature clusters can also be made for the models considered, and strongly disfavor Omega_0=1 in Gaussian models and marginally disfavor Omega_0=1 in texture models. Only Omega_0=0.3 Gaussian models are consistent with all the data considered.Comment: 34 pg incl. 8 embedded figures, LaTeX, aaspp4.sty, submitted to Ap

    Fourier Analysis of Redshift Space Distortions and the Determination of Omega

    Get PDF
    The peculiar velocities of galaxies distort the pattern of galaxy clustering in redshift space, making the redshift space power spectrum anisotropic. In the linear regime, the strength of this distortion depends only on the ratio βf(Ω)/bΩ0.6/b\beta \equiv f(\Omega)/b \approx \Omega^{0.6}/b, where Ω\Omega is the cosmological density parameter and bb is the bias parameter. We derive a linear theory estimator for β\beta based on the harmonic moments of the redshift space power spectrum. Using N-body simulations, we examine the impact of non-linear gravitational clustering on the power spectrum anisotropy and on our β\beta-estimator. Non-linear effects can be important out to wavelengths λ50\lambda \sim 50Mpc/h or larger; in most cases, they lower the quadrupole moment of the power spectrum and thereby depress the estimate of β\beta below the true value. With a sufficiently large redshift survey, the scaling of non-linear effects may allow separate determinations of Ω\Omega and bb. We describe a practical technique for measuring the anisotropy of the power spectrum from galaxy redshift surveys, and we test the technique on mock catalogues drawn from the N-body simulations. Preliminary application of our methods to the 1.2 Jy IRAS galaxy survey yields βest0.30.4\beta_{est} \sim 0.3-0.4 at wavelengths λ3040\lambda \sim 30-40Mpc/h . Non-linear effects remain important at these scales, so this estimate of β\beta is probably lower than the true value.Comment: uuencoded compressed postscript fil

    Redshift distortions in one-dimensional power spectra

    Full text link
    We present a model for one-dimensional (1D) matter power spectra in redshift space as estimated from data provided along individual lines of sight. We derive analytic expressions for these power spectra in the linear and nonlinear regimes, focusing on redshift distortions arising from peculiar velocities. In the linear regime, redshift distortions enhance the 1D power spectra only on small scales, and do not affect the power on large scales. This is in contrast to the effect of distortions on three-dimensional (3D) power spectra estimated from data in 3D space, where the enhancement is independent of scale. For CDM cosmologies, the 1D power spectra in redshift and real space are similar for wavenumbers q<0.1h/Mpcq<0.1h/Mpc where both have a spectral index close to unity, independent of the details of the 3D power spectrum. Nonlinear corrections drive the 1D power spectrum in redshift space into a nearly universal shape over scale q<10h/Mpcq<10h/Mpc, and suppress the power on small scales as a result of the strong velocity shear and random motions. The redshift space, 1D power spectrum is mostly sensitive to the amplitude of the initial density perturbations. Our results are useful in particular for power spectra computed from the SDSS quasars sample.Comment: MNRAS in press. matches published versio

    Maximum-Likelihood Comparisons of Tully-Fisher and Redshift Data: Constraints on Omega and Biasing

    Full text link
    We compare Tully-Fisher (TF) data for 838 galaxies within cz=3000 km/sec from the Mark III catalog to the peculiar velocity and density fields predicted from the 1.2 Jy IRAS redshift survey. Our goal is to test the relation between the galaxy density and velocity fields predicted by gravitational instability theory and linear biasing, and thereby to estimate βI=Ω0.6/bI,\beta_I = \Omega^{0.6}/b_I, where bIb_I is the linear bias parameter for IRAS galaxies. Adopting the IRAS velocity and density fields as a prior model, we maximize the likelihood of the raw TF observables, taking into account the full range of selection effects and properly treating triple-valued zones in the redshift-distance relation. Extensive tests with realistic simulated galaxy catalogs demonstrate that the method produces unbiased estimates of βI\beta_I and its error. When we apply the method to the real data, we model the presence of a small but significant velocity quadrupole residual (~3.3% of Hubble flow), which we argue is due to density fluctuations incompletely sampled by IRAS. The method then yields a maximum likelihood estimate βI=0.49±0.07\beta_I=0.49\pm 0.07 (1-sigma error). We discuss the constraints on Ω\Omega and biasing that follow if we assume a COBE-normalized CDM power spectrum. Our model also yields the 1-D noise noise in the velocity field, including IRAS prediction errors, which we find to be be 125 +/- 20 km/sec.Comment: 53 pages, 20 encapsulated figures, two tables. Submitted to the Astrophysical Journal. Also available at http://astro.stanford.edu/jeff

    Scaling properties of the redshift power spectrum: theoretical models

    Get PDF
    We report the results of an analysis of the redshift power spectrum PS(k,μ)P^S(k,\mu) in three typical Cold Dark Matter (CDM) cosmological models, where μ\mu is the cosine of the angle between the wave vector and the line-of-sight. Two distinct biased tracers derived from the primordial density peaks of Bardeen et al. and the cluster-underweight model of Jing, Mo, & B\"orner are considered in addition to the pure dark matter models. Based on a large set of high resolution simulations, we have measured the redshift power spectrum for the three tracers from the linear to the nonlinear regime. We investigate the validity of the relation - guessed from linear theory - in the nonlinear regime PS(k,μ)=PR(k)[1+βμ2]2D(k,μ,σ12(k)), P^S(k,\mu)=P^R(k)[1+\beta\mu^2]^2D(k,\mu,\sigma_{12}(k)), where PR(k)P^R(k) is the real space power spectrum, and β\beta equals Ω00.6/bl\Omega_0^{0.6}/b_l. The damping function DD which should generally depend on kk, μ\mu, and σ12(k)\sigma_{12}(k), is found to be a function of only one variable kμσ12(k)k\mu\sigma_{12}(k). This scaling behavior extends into the nonlinear regime, while DD can be accurately expressed as a Lorentz function - well known from linear theory - for values D>0.1D > 0.1. The difference between σ12(k)\sigma_{12}(k) and the pairwise velocity dispersion defined by the 3-D peculiar velocity of the simulations (taking r=1/kr=1/k) is about 15%. Therefore σ12(k)\sigma_{12}(k) is a good indicator of the pairwise velocity dispersion. The exact functional form of DD depends on the cosmological model and on the bias scheme. We have given an accurate fitting formula for the functional form of DD for the models studied.Comment: accepted for publication in ApJ;24 pages with 7 figures include

    3D Spherical Analysis of Baryon Acoustic Oscillations

    Full text link
    Baryon Acoustic Oscillations (BAOs) are oscillatory features in the galaxy power spectrum and are a standard rod to measure the cosmological expansion. These have been studied in Cartesian space (Fourier or real space) or in Spherical Harmonic (SH) space in thin shells. Future wide-field surveys will cover both wide and deep regions of the sky and thus require a simultaneous treatment of the spherical sky and of an extended radial coverage. The Spherical Fourier-Bessel (SFB) decomposition is a natural basis for the analysis of fields in this geometry and facilitates the combination of BAO surveys with other cosmological probes readily described in this basis. We present here a new way to analyse BAOs by studying the BAO wiggles from the SFB power spectrum. In SFB space, the power spectrum generally has both a radial (k) and tangential (l) dependence and so do the BAOs. In the deep survey limit and ignoring evolution, the SFB power spectrum becomes radial and reduces to the Cartesian Fourier power spectrum. In the limit of a thin shell, all the information is contained in the tangential modes described by the 2D SH power spectrum. We find that the radialisation of the SFB power spectrum is still a good approximation even when considering an evolving and biased galaxy field with a finite selection function. This effect can be observed by all-sky surveys with depths comparable to current surveys. We find that the BAOs radialise more rapidly than the full SFB power spectrum. Our results suggest the first peak of the BAOs in SFB space becomes radial out to l ~ 10 for all-sky surveys with the same depth as SDSS or 2dF, and out to l ~ 70 for an all-sky stage IV survey. Subsequent BAO peaks also become radial, but for shallow surveys these may be in the non-linear regime. For modes that have become radial, measurements at different l's are useful in practice to reduce measurement errors.Comment: 6 pages + Appendix. Astro-ph abstract is abridged. Updated with comments from anonymous referee. Corrected axes of Figure 2. Extended discussion of radialisation. Accepted for publication in Astronomy & Astrophysic
    corecore