1,591 research outputs found

    16O-12C scattering : description of the gross structure features using an optical model

    No full text
    Measurements of the scattering of 16O on 12C have been made over a limited angular range in the forward and backward hemispheres at laboratory (16O) energies of 80,85,91,93,95,101, 122 MeV. The excitation function of the maximum near 156° (c.m.) has also been measured in steps of ∼ 0.5 MeV between 80 and 101 MeV (lab.). The data were combined with other existing measurements and the gross structure features analyzed using an optical model whose imaginary radius increases with energy [FORMULA]

    Corallivory in tubelip wrasses: diet, feeding and trophic importance

    Get PDF
    This paper describes a 2 month study of the patterns of abundance, feeding pressure, diet and feeding selectivity in corallivorous tubelip wrasses (Labridae), rarely studied, yet widespread and abundant group of corallivores on Indo-Pacific coral reefs. The relative abundance and feeding pressure of corallivorous wrasses and butterflyfishes (Chaetodontidae) in Kimbe Bay, Papua New Guinea, were compared. Overall, tubelip wrasses were more than twice as abundant as corallivorous butterflyfishes and accounted for three times as many feeding bites on corals. The three most abundant tubelip wrasses (yellowtail tubelip Diproctacanthus xanthurus, Allen's tubelip Labropsis alleni and the tubelip wrasse Labrichthys unilineatus) were all obligate corallivores taking > 97% of bites from the surface of live corals. Labropsis alleni and D. xanthurus were highly selective, consuming preferred prey species in proportions significantly higher than expected given their availability. In contrast, L. unilineatus was fairly non-selective and consumed most corals in direct accordance with their availability. As coral predators, tubelip wrasses are highly comparable to coral-feeding butterflyfishes in the coral species consumed, range of dietary specialization and their reliance on live coral. Tubelip wrasses, however, may supersede butterflyfishes as the predominant corallivorous family in some Indo-Pacific locations, and coral-feeding tubelip wrasses are likely to be severely affected by coral decline

    Achieving convergence in galaxy formation models by augmenting N-body merger trees

    Get PDF
    Accurate modeling of galaxy formation in a hierarchical, cold dark matter universe requires the use of sufficiently high-resolution merger trees to obtain convergence in the predicted properties of galaxies. When semi-analytic galaxy formation models are applied to cosmological N-body simulation merger trees, it is often the case that those trees have insufficient resolution to give converged galaxy properties. We demonstrate a method to augment the resolution of N-body merger trees by grafting in branches of Monte Carlo merger trees with higher resolution, but which are consistent with the pre-existing branches in the N-body tree. We show that this approach leads to converged galaxy properties

    Lattice-gas Monte Carlo study of adsorption in pores

    Get PDF
    A lattice gas model of adsorption inside cylindrical pores is evaluated with Monte Carlo simulations. The model incorporates two kinds of site: (a line of) ``axial'' sites and surrounding ``cylindrical shell'' sites, in ratio 1:7. The adsorption isotherms are calculated in either the grand canonical or canonical ensembles. At low temperature, there occur quasi-transitions that would be genuine thermodynamic transitions in mean-field theory. Comparison between the exact and mean-field theory results for the heat capacity and adsorption isotherms are provided

    Time dependent neutrino billiards

    Full text link
    Quantum dynamica of a massless Dirac particle in time-dependent 1D box and circular billiard with time-dependent radius is studied. An exact analytical wave functions and eigenvalues are obtained for the case of linear time-dependence of the boundary position

    An interleaved sampling scheme for the characterization of single qubit dynamics

    Full text link
    In this paper, we demonstrate that interleaved sampling techniques can be used to characterize the Hamiltonian of a qubit and its environmental decoherence rate. The technique offers a significant advantage in terms of the number of measurements that are required to characterize a qubit. When compared to the standard Nyquist-Shannon sampling rate, the saving in the total measurement time for the interleaved method is approximately proportional to the ratio of the sample rates.Comment: 9 pages, 4 figure

    The spatial distribution of cold gas in hierarchical galaxy formation models

    Get PDF
    The distribution of cold gas in dark matter haloes is driven by key processes in galaxy formation: gas cooling, galaxy mergers, star formation and reheating of gas by supernovae. We compare the predictions of four different galaxy formation models for the spatial distribution of cold gas. We find that satellite galaxies make little contribution to the abundance or clustering strength of cold gas selected samples, and are far less important than they are in optically selected samples. The halo occupation distribution function of present-day central galaxies with cold gas mass >109 h−1 M⊙ is peaked around a halo mass of ≈1011 h−1 M⊙, a scale that is set by the AGN suppression of gas cooling. The model predictions for the projected correlation function are in good agreement with measurements from the H i Parkes All-Sky Survey. We compare the effective volume of possible surveys with the Square Kilometre Array with those expected for a redshift survey in the near-infrared. Future redshift surveys using neutral hydrogen emission will make possible measurements of the baryonic acoustic oscillations that are competitive with the most ambitious spectroscopic surveys planned in the near-infrared

    Using X-ray Crystallography, Biophysics, and Functional Assays to Determine the Mechanisms Governing T-cell Receptor Recognition of Cancer Antigens.

    Get PDF
    Human CD8+ cytotoxic T lymphocytes (CTLs) are known to play an important role in tumor control. In order to carry out this function, the cell surface-expressed T-cell receptor (TCR) must functionally recognize human leukocyte antigen (HLA)-restricted tumor-derived peptides (pHLA). However, we and others have shown that most TCRs bind sub-optimally to tumor antigens. Uncovering the molecular mechanisms that define this poor recognition could aid in the development of new targeted therapies that circumnavigate these shortcomings. Indeed, present therapies that lack this molecular understanding have not been universally effective. Here, we describe methods that we commonly employ in the laboratory to determine how the nature of the interaction between TCRs and pHLA governs T-cell functionality. These methods include the generation of soluble TCRs and pHLA and the use of these reagents for X-ray crystallography, biophysical analysis, and antigen-specific T-cell staining with pHLA multimers. Using these approaches and guided by structural analysis, it is possible to modify the interaction between TCRs and pHLA and to then test how these modifications impact T-cell antigen recognition. These findings have already helped to clarify the mechanism of T-cell recognition of a number of cancer antigens and could direct the development of altered peptides and modified TCRs for new cancer therapies

    Theoretical models of the halo occupation distribution : separating central and satellite galaxies

    Get PDF
    The halo occupation distribution (HOD) describes the relation between galaxies and dark matter at the level of individual dark matter halos. The properties of galaxies residing at the centers of halos differ from those of satellite galaxies because of differences in their formation histories. Using a smoothed particle hydrodynamics (SPH) simulation and a semianalytic (SA) galaxy formation model, we examine the separate contributions of central and satellite galaxies to the HOD, more specifically to the probability P(N|M) that a halo of virial mass M contains N galaxies of a particular class. In agreement with earlier results for dark matter subhalos, we find that the mean occupation function langNrangM for galaxies above a baryonic mass threshold can be approximated by a step function for central galaxies plus a power law for satellites and that the distribution of satellite numbers is close to Poisson at fixed halo mass. Since the number of central galaxies is always zero or one, the width of P(N|M) is narrower than a Poisson distribution at low N and approaches Poisson at high N. For galaxy samples defined by different baryonic mass thresholds, there is a nearly linear relation between the minimum halo mass Mmin required to host a central galaxy and the mass M1 at which an average halo hosts one satellite, with M1 ≈ 14Mmin (SPH) or M1 ≈ 18Mmin (SA). The stellar population age of central galaxies correlates with halo mass, and this correlation explains much of the age dependence of the galaxy HOD. The mean occupation number of young galaxies exhibits a local minimum at M ~ 10Mmin where halos are too massive to host a young central galaxy but not massive enough to host satellites. Using the SA model, we show that the conditional galaxy mass function at fixed halo mass cannot be described by a Schechter function because central galaxies produce a "bump" at high masses. We suggest parameterizations for the HOD and the conditional luminosity function that can be used to model observed galaxy clustering. Many of our predictions are in good agreement with recent results inferred from clustering in the Sloan Digital Sky Survey

    Phonons and specific heat of linear dense phases of atoms physisorbed in the grooves of carbon nanotube bundles

    Full text link
    The vibrational properties (phonons) of a one-dimensional periodic phase of atoms physisorbed in the external groove of the carbon nanotube bundle are studied. Analytical expressions for the phonon dispersion relations are derived. The derived expressions are applied to Xe, Kr and Ar adsorbates. The specific heat pertaining to dense phases of these adsorbates is calculated.Comment: 4 PS figure
    corecore