23 research outputs found
A biophysical model of dynamic balancing of excitation and inhibition in fast oscillatory large-scale networks
Over long timescales, neuronal dynamics can be robust to quite large perturbations, such as changes in white matter connectivity and grey matter structure through processes including learning, aging, development and certain disease processes. One possible explanation is that robust dynamics are facilitated by homeostatic mechanisms that can dynamically rebalance brain networks. In this study, we simulate a cortical brain network using the Wilson-Cowan neural mass model with conduction delays and noise, and use inhibitory synaptic plasticity (ISP) to dynamically achieve a spatially local balance between excitation and inhibition. Using MEG data from 55 subjects we find that ISP enables us to simultaneously achieve high correlation with multiple measures of functional connectivity, including amplitude envelope correlation and phase locking. Further, we find that ISP successfully achieves local E/I balance, and can consistently predict the functional connectivity computed from real MEG data, for a much wider range of model parameters than is possible with a model without ISP
How reliable are MEG resting-state connectivity metrics?
MEG offers dynamic and spectral resolution for resting-state connectivity which is unavailable in fMRI. However, there are a wide range of available network estimation methods for MEG, and little in the way of existing guidance on which ones to employ. In this technical note, we investigate the extent to which many popular measures of stationary connectivity are suitable for use in resting-state MEG, localising magnetic sources with a scalar beamformer. We use as empirical criteria that network measures for individual subjects should be repeatable, and that group-level connectivity estimation shows good reproducibility. Using publically-available data from the Human Connectome Project, we test the reliability of 12 network estimation techniques against these criteria. We find that the impact of magnetic field spread or spatial leakage artefact is profound, creates a major confound for many connectivity measures, and can artificially in ate measures of consistency. Among those robust to this effect, we find poor test-retest reliability in phase- or coherence-based metrics such as the phase lag index or the imaginary part of coherency. The most consistent methods for stationary connectivity estimation over all of our tests are simple amplitude envelope correlation and partial correlation measures
Modulation of hippocampal theta and hippocampal-prefrontal cortex function by a schizophrenia risk gene
Hippocampal theta-band oscillations are thought to facilitate the co-ordination of brain activity across distributed networks, including between the hippocampus and prefrontal cortex (PFC). Impairments in hippocampus-PFC functional connectivity are implicated in schizophrenia and are associated with a polymorphism within the ZNF804A gene that shows a genome-wide significant association with schizophrenia. However, the mechanisms by which ZNF804A affects hippocampus-PFC connectivity are unknown. We used a multimodal imaging approach to investigate the impact of the ZNF804A polymorphism on hippocampal theta and hippocampal network coactivity. Healthy volunteers homozygous for the ZNF804A rs1344706 (A[risk]/C[nonrisk]) polymorphism were imaged at rest using both magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). A dual-regression approach was used to investigate coactivations between the hippocampal network and other brain regions for both modalities, focusing on the theta band in the case of MEG. We found a significant decrease in intrahippocampal theta (using MEG) and greater coactivation of the superior frontal gyrus with the hippocampal network (using fMRI) in risk versus nonrisk homozygotes. Furthermore, these measures showed a significant negative correlation. Our demonstration of an inverse relationship between hippocampal theta and hippocampus-PFC coactivation supports a role for hippocampal theta in coordinating hippocampal-prefrontal activity. The ZNF804A-related differences that we find in hippocampus-PFC coactivation are consistent with previously reported associations with functional connectivity and with these changes lying downstream of altered hippocampal theta. Changes in hippocampal-PFC co-ordination, driven by differences in oscillatory activity, may be one mechanism by which ZNF804A impacts on brain function and risk for psychosis
The heritability of multi-modal connectivity in human brain activity
Patterns of intrinsic human brain activity exhibit a profile of functional connectivity that is associated with behaviour and cognitive performance, and deteriorates with disease. This paper investigates the relative importance of genetic factors and the common environment between twins in determining this functional connectivity profile. Using functional magnetic resonance imaging (fMRI) on 820 subjects from the Human Connectome Project, and magnetoencephalographic (MEG) recordings from a subset, the heritability of connectivity between 39 cortical regions was estimated. On average over all connections, genes account for about 15% of the observed variance in fMRI connectivity (and about 10% in alpha-band and 20% in beta-band oscillatory power synchronisation), which substantially exceeds the contribution from the environment shared between twins. Therefore, insofar as twins share a common upbringing, it appears that genes, rather than the developmental environment, play a dominant role in determining the coupling of neuronal activity
Altered cortical beta-band oscillations reflect motor system degeneration in amyotrophic lateral sclerosis
Continuous rhythmic neuronal oscillations underpin local and regional cortical communication. The impact of the motor system neurodegenerative syndrome amyotrophic lateral sclerosis (ALS) on the neuronal oscillations subserving movement might therefore serve as a sensitive marker of disease activity. Movement preparation and execution are consistently associated with modulations to neuronal oscillation beta (15-30 Hz) power. Cortical beta-band oscillations were measured using magnetoencephalography (MEG) during preparation for, execution, and completion of a visually cued, lateralised motor task that included movement inhibition trials. Eleven ‘classical’ ALS patients, 9 with the primary lateral sclerosis (PLS) phenotype, and 12 asymptomatic carriers of ALS-associated gene mutations were compared with age-similar healthy control groups. Augmented beta desynchronisation was observed in both contra- and ipsilateral motor cortices of ALS patients during motor preparation. Movement execution coincided with excess beta desynchronisation in asymptomatic mutation carriers. Movement completion was followed by a slowed rebound of beta power in all symptomatic patients, further reflected in delayed hemispheric lateralisation for beta rebound in the PLS group. This may correspond to the particular involvement of interhemispheric fibres of the corpus callosum previously demonstrated in diffusion tensor imaging studies. We conclude that the ALS spectrum is characterised by intensified cortical beta desynchronisation followed by delayed rebound, concordant with a broader concept of cortical hyperexcitability, possibly through loss of inhibitory interneuronal influences. MEG may potentially detect cortical dysfunction prior to the development of overt symptoms, and thus be able to contribute to the assessment of future neuroprotective strategies
Increased cerebral functional connectivity in ALS: a resting-state magnetoencephalography study
Objective We sought to assess cortical function in amyotrophic lateral sclerosis (ALS) using noninvasive neural signal recording. Methods Resting-state magnetoencephalography was used to measure power fluctuations in neuronal oscillations from distributed cortical parcels in 24 patients with ALS and 24 healthy controls. A further 9 patients with primary lateral sclerosis and a group of 15 asymptomatic carriers of genetic mutations associated with ALS were also studied. Results Increased functional connectivity, particularly from the posterior cingulate cortex, was demonstrated in both patient groups compared to healthy controls. Directionally similar patterns were also evident in the asymptomatic genetic mutation carrier group. Conclusion Increased cortical functional connectivity elevation is a quantitative marker that reflects ALS pathology across its clinical spectrum, and may develop during the presymptomatic period. The amelioration of pathologic magnetoencephalography signals might be a marker sensitive enough to provide proof-of-principle in the development of future neuroprotective therapeutics
Altered cortical beta-band oscillations reflect motor system degeneration in amyotrophic lateral sclerosis
Continuous rhythmic neuronal oscillations underpin local and regional cortical communication. The impact of the motor system neurodegenerative syndrome amyotrophic lateral sclerosis (ALS) on the neuronal oscillations subserving movement might therefore serve as a sensitive marker of disease activity. Movement preparation and execution are consistently associated with modulations to neuronal oscillation beta (15-30 Hz) power. Cortical beta-band oscillations were measured using magnetoencephalography (MEG) during preparation for, execution, and completion of a visually cued, lateralised motor task that included movement inhibition trials. Eleven ‘classical’ ALS patients, 9 with the primary lateral sclerosis (PLS) phenotype, and 12 asymptomatic carriers of ALS-associated gene mutations were compared with age-similar healthy control groups. Augmented beta desynchronisation was observed in both contra- and ipsilateral motor cortices of ALS patients during motor preparation. Movement execution coincided with excess beta desynchronisation in asymptomatic mutation carriers. Movement completion was followed by a slowed rebound of beta power in all symptomatic patients, further reflected in delayed hemispheric lateralisation for beta rebound in the PLS group. This may correspond to the particular involvement of interhemispheric fibres of the corpus callosum previously demonstrated in diffusion tensor imaging studies. We conclude that the ALS spectrum is characterised by intensified cortical beta desynchronisation followed by delayed rebound, concordant with a broader concept of cortical hyperexcitability, possibly through loss of inhibitory interneuronal influences. MEG may potentially detect cortical dysfunction prior to the development of overt symptoms, and thus be able to contribute to the assessment of future neuroprotective strategies