1,946 research outputs found
Spatial characterization, resolution, and volumetric change of coastal dunes using airborne LIDAR: Cape Hatteras
ABSTRACT The technological advancement in topographic mapping known as airborne Light Detection and Ranging (LIDAR) allows researchers to gather highly accurate and densely sampled coastal elevation data at a rapid rate. The problem is to determine the optimal resolutions at which to represent coastal dunes for volumetric change analysis. This study uses digital elevation models (DEM) generated from LIDAR data and spatial statistics to better understand dune characterization at a series of spatial resolutions. The LIDAR data were collected jointly by the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA), and the U.S. Geological Survey (USGS). DEMs of two study sites (100×200 m) located in Cape Hatteras National Seashore, North Carolina were generated using a raster-based geographic information system (GIS). Changes in the dune volume were calculated for a 1-year period of time (Fall 1996(Fall -1997 at grid cell resolutions ranging from 1×1 to 20×20 m. Directional statistics algorithms were used to calculate local variance and characterize topographic complexity. Data processing was described in detail in order to provide an introduction to working with LIDAR data in a GIS. Results from these study sites indicated that a 1-2 m resolution provided the most reliable representation of coastal dunes on Cape Hatteras and most accurate volumetric change measurements. Results may vary at other sites and at different spatial extents, but the methods developed here can be applied to other locations to determine the optimum resolutions at which to represent and characterize topography using common GIS and database software
Theoretical Evaluation of Anisotropic Reflectance Correction Approaches for Addressing Multi-Scale Topographic Effects on the Radiation-Transfer Cascade in Mountain Environments
Research involving anisotropic-reflectance correction (ARC) of multispectral imagery to account for topographic effects has been ongoing for approximately 40 years. A large body of research has focused on evaluating empirical ARC methods, resulting in inconsistent results. Consequently, our research objective was to evaluate commonly used ARC methods using first-order radiation-transfer modeling to simulate ASTER multispectral imagery over Nanga Parbat, Himalaya. Specifically, we accounted for orbital dynamics, atmospheric absorption and scattering, direct- and diffuse-skylight irradiance, land cover structure, and surface biophysical variations to evaluate their effectiveness in reducing multi-scale topographic effects. Our results clearly reveal that the empirical methods we evaluated could not reasonably account for multi-scale topographic effects at Nanga Parbat. The magnitude of reflectance and the correlation structure of biophysical properties were not preserved in the topographically-corrected multispectral imagery. The CCOR and SCS+C methods were able to remove topographic effects, given the Lambertian assumption, although atmospheric correction was required, and we did not account for other primary and secondary topographic effects that are thought to significantly influence spectral variation in imagery acquired over mountains. Evaluation of structural-similarity index images revealed spatially variable results that are wavelength dependent. Collectively, our simulation and evaluation procedures strongly suggest that empirical ARC methods have significant limitations for addressing anisotropic reflectance caused by multi-scale topographic effects. Results indicate that atmospheric correction is essential, and most methods failed to adequately produce the appropriate magnitude and spatial variation of surface reflectance in corrected imagery. Results were also wavelength dependent, as topographic effects influence radiation-transfer components differently in different regions of the electromagnetic spectrum. Our results explain inconsistencies described in the literature, and indicate that numerical modeling efforts are required to better account for multi-scale topographic effects in various radiation-transfer components.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Multiple indices of diffusion identifies white matter damage in mild cognitive impairment and Alzheimer's disease
The study of multiple indices of diffusion, including axial (DA), radial (DR) and mean diffusion (MD), as well as fractional anisotropy (FA), enables WM damage in Alzheimer's disease (AD) to be assessed in detail. Here, tract-based spatial statistics (TBSS) were performed on scans of 40 healthy elders, 19 non-amnestic MCI (MCIna) subjects, 14 amnestic MCI (MCIa) subjects and 9 AD patients. Significantly higher DA was found in MCIna subjects compared to healthy elders in the right posterior cingulum/precuneus. Significantly higher DA was also found in MCIa subjects compared to healthy elders in the left prefrontal cortex, particularly in the forceps minor and uncinate fasciculus. In the MCIa versus MCIna comparison, significantly higher DA was found in large areas of the left prefrontal cortex. For AD patients, the overlap of FA and DR changes and the overlap of FA and MD changes were seen in temporal, parietal and frontal lobes, as well as the corpus callosum and fornix. Analysis of differences between the AD versus MCIna, and AD versus MCIa contrasts, highlighted regions that are increasingly compromised in more severe disease stages. Microstructural damage independent of gross tissue loss was widespread in later disease stages. Our findings suggest a scheme where WM damage begins in the core memory network of the temporal lobe, cingulum and prefrontal regions, and spreads beyond these regions in later stages. DA and MD indices were most sensitive at detecting early changes in MCIa
Therapeutic Monoclonal Antibodies to Prevent Tuberculosis Infection
Mycobacteria tuberculosis (Mtb) is a major cause of human morbidity and mortality. Transmission occurs through inhalation of aerosolized Mtb and the initial infection is believed to occur primarily in the alveolar macrophage, although Mtb can infect other cells residing in the lung including dendritic cells, pneumocytes and M cells. Several molecules derived from Mtb are involved in the attachment of the organism to host receptors (opsonic and non-opsonic), which have been reasonably well elucidated. However, a complete understanding of how Mtb attaches to the host and the relative importance of each mechanism on the outcome of infection remains elusive. We hypothesize that protection from infection is possible by blocking the critical initial surface interactions of the organism with the host cell using specific monoclonal antibodies (mAbs). To develop effective mAbs, the outermost layers of Mtb, the capsule and outer membrane, were isolated and characterized by protein gel and LC/MS/MS. Approximately 1000 different proteins were identified in the isolations, of which ~25% were unique to one of the two fractions. The capsule or outer membrane preparations were used as antigens to immunize CD1 mice for up to 12 weeks to generate antibodies via traditional hybridoma generation. Antibodies were screened, selected and characterized by their ability to bind whole cell Mtb by ELISA, demonstration of unique heavy chain variable region sequence and binding specificity by Western Blot. Of approximately 1500 screened hybridomas, 30 lead mAbs have been isolated with specificity to various targets. Preliminary results suggest several of the lead mAb candidates are able to prevent Mtb-induced macrophage cell death in vitro. Future studies will attempt to confirm efficacy in vivo after aerosolized infection in mice with mAb-coated Mtb or parenteral administration of mAb(s). Targets of functional mAbs will be determined and these antigens could serve as viable candidates for vaccine development
Recommended from our members
Correlating Pulses from Two Spitfire, 800nm Lasers
The E163 laser acceleration experiments conducted at SLAC have stringent requirements on the temporal properties of two regeneratively amplified, 800nm, Spitfire laser systems. To determine the magnitude and cause of timing instabilities between the two Ti:Sapphire amplifiers, we pass the two beams through a cross-correlator and focus the combined beam onto a Hamamatsu G1117 photodiode. The photodiode has a bandgap such that single photon processes are suppressed and only the second order, two-photon process produces an observable response. The response is proportional to the square of the intensity. The diode is also useful as a diagnostic to determine the optimal configuration of the compression cavity
Characterization of plexinA and two distinct semaphorin1a transcripts in the developing and adult cricket Gryllus bimaculatus
Guidance cues act during development to guide growth cones to their proper targets in both the central and peripheral nervous systems. Experiments in many species indicate that guidance molecules also play important roles after development, though less is understood about their functions in the adult. The Semaphorin family of guidance cues, signaling through Plexin receptors, influences the development of both axons and dendrites in invertebrates. Semaphorin functions have been extensively explored in Drosophila melanogaster and some other Dipteran species, but little is known about their function in hemimetabolous insects. Here, we characterize sema1a and plexA in the cricket Gryllus bimaculatus. In fact, we found two distinct predicted Sema1a proteins in this species, Sema1a.1 and Sema1a.2, which shared only 48% identity at the amino acid level. We include a phylogenetic analysis that predicted that many other insect species, both holometabolous and hemimetabolous, express two Sema1a proteins as well. Finally, we used in situ hybridization to show that sema1a.1 and sema1a.2 expression patterns were spatially distinct in the embryo, and both roughly overlap with plexA. All three transcripts were also expressed in the adult brain, mainly in the mushroom bodies, though sema1a.2 was expressed most robustly. sema1a.2 was also expressed strongly in the adult thoracic ganglia while sema1a.1 was only weakly expressed and plexA was undetectable
Critical behaviour of the Rouse model for gelling polymers
It is shown that the traditionally accepted "Rouse values" for the critical
exponents at the gelation transition do not arise from the Rouse model for
gelling polymers. The true critical behaviour of the Rouse model for gelling
polymers is obtained from spectral properties of the connectivity matrix of the
fractal clusters that are formed by the molecules. The required spectral
properties are related to the return probability of a "blind ant"-random walk
on the critical percolating cluster. The resulting scaling relations express
the critical exponents of the shear-stress-relaxation function, and hence those
of the shear viscosity and of the first normal stress coefficient, in terms of
the spectral dimension of the critical percolating cluster and the
exponents and of the cluster-size distribution.Comment: 9 pages, slightly extended version, to appear in J. Phys.
Screening of Hydrodynamic Interactions in Semidilute Polymer Solutions: A Computer Simulation Study
We study single-chain motion in semidilute solutions of polymers of length N
= 1000 with excluded-volume and hydrodynamic interactions by a novel algorithm.
The crossover length of the transition from Zimm (short lengths and times) to
Rouse dynamics (larger scales) is proportional to the static screening length.
The crossover time is the corresponding Zimm time. Our data indicate Zimm
behavior at large lengths but short times. There is no hydrodynamic screening
until the chains feel constraints, after which they resist the flow:
"Incomplete screening" occurs in the time domain.Comment: 3 figure
- …