1,452 research outputs found

    South Dakota Seed Quality: A Drillbox Survey

    Get PDF
    In a 1969 survey, a total of 450 samples of oats, barley, hard red spring wheat, durum wheat, and flax were taken during the spring planting season. These samples were collected in 23 eastern South Dakota counties. Several questions were asked the operator about each seed lot at the time the sample was collected. The samples were analyzed at the Seed Testing Laboratory at South Dakota State University for percent of pure seed, kind and number per pound of all crop seed, common weed seeds, noxious weed seeds, and germination. A copy of the analysis was sent to the cooperator

    The Effects of Stacking on the Configurations and Elasticity of Single Stranded Nucleic Acids

    Full text link
    Stacking interactions in single stranded nucleic acids give rise to configurations of an annealed rod-coil multiblock copolymer. Theoretical analysis identifies the resulting signatures for long homopolynucleotides: A non monotonous dependence of size on temperature, corresponding effects on cyclization and a plateau in the extension force law. Explicit numerical results for poly(dA) and poly(rU) are presented.Comment: 4 pages and 2 figures. Accepted in Phys. Rev. E Rapid Com

    Identifying Structural Variation in Haploid Microbial Genomes from Short-Read Resequencing Data Using Breseq

    Get PDF
    Mutations that alter chromosomal structure play critical roles in evolution and disease, including in the origin of new lifestyles and pathogenic traits in microbes. Large-scale rearrangements in genomes are often mediated by recombination events involving new or existing copies of mobile genetic elements, recently duplicated genes, or other repetitive sequences. Most current software programs for predicting structural variation from short-read DNA resequencing data are intended primarily for use on human genomes. They typically disregard information in reads mapping to repeat sequences, and significant post-processing and manual examination of their output is often required to rule out false-positive predictions and precisely describe mutational events. Results: We have implemented an algorithm for identifying structural variation from DNA resequencing data as part of the breseq computational pipeline for predicting mutations in haploid microbial genomes. Our method evaluates the support for new sequence junctions present in a clonal sample from split-read alignments to a reference genome, including matches to repeat sequences. Then, it uses a statistical model of read coverage evenness to accept or reject these predictions. Finally, breseq combines predictions of new junctions and deleted chromosomal regions to output biologically relevant descriptions of mutations and their effects on genes. We demonstrate the performance of breseq on simulated Escherichia coli genomes with deletions generating unique breakpoint sequences, new insertions of mobile genetic elements, and deletions mediated by mobile elements. Then, we reanalyze data from an E. coli K-12 mutation accumulation evolution experiment in which structural variation was not previously identified. Transposon insertions and large-scale chromosomal changes detected by breseq account for similar to 25% of spontaneous mutations in this strain. In all cases, we find that breseq is able to reliably predict structural variation with modest read-depth coverage of the reference genome (>40-fold). Conclusions: Using breseq to predict structural variation should be useful for studies of microbial epidemiology, experimental evolution, synthetic biology, and genetics when a reference genome for a closely related strain is available. In these cases, breseq can discover mutations that may be responsible for important or unintended changes in genomes that might otherwise go undetected.U.S. National Institutes of Health R00-GM087550U.S. National Science Foundation (NSF) DEB-0515729NSF BEACON Center for the Study of Evolution in Action DBI-0939454Cancer Prevention & Research Institute of Texas (CPRIT) RP130124University of Texas at Austin startup fundsUniversity of Texas at AustinCPRIT Cancer Research TraineeshipMolecular Bioscience

    Activation mechanism of rabbit skeletal muscle myosin light chain kinase 5′-p-Fluorosulfonylbenzoyl adenosine as a probe of the MgATP-binding site of the calmodulin-bound and calmodulin-free enzyme

    Get PDF
    Abstract5′-p-Fluorosulfonylbenzoyl adenosine (FSBA), an ATP-like affinity labelling reagent, reacted with rabbit skeletal muscle myosin light chain kinase (skMLCK) and its calmodulin complex in a site-specific manner. Reaction was dependent upon the presence of the adenosine moiety of FSBA, saturated with increasing FSBA, was inhibited by MgATP, and was accompanied by stoichiometric incorporation of [14C]FSBA. The kinetic constants describing the reaction were similar for skMLCK and its calmodulin complex: k3= −0.040 min−1 and −0.038 mint-1, and Ki=0.18 mM and 0.40 mM, respectively. It is concluded that the MgATP-binding site on skMLCK remains accessible at all times and maintains a near constant conformation

    Artificial Metalloenzymes as Catalysts for Oxidative Lignin Degradation

    Get PDF
    We report novel artificial metalloenzymes (ArMs), containing tris­(pyridylmethyl)­amine (TPA), for the atom economic oxidation of lignin β-O-4 model compounds, using hydrogen peroxide. The protein scaffold alters the selectivity of the reaction from a low yielding cleavage reaction when using the parent Fe-tpa complex to a high yielding benzylic alcohol oxidation when using the complex incorporated into a protein scaffold, SCP-2L A100C. Engineering the protein scaffold to incorporate glutamic acid was found to improve the ArM activity, showing that rational design of the protein environment using metal binding amino acids can be a first step toward improving the overall activity of an artificial metalloenzyme

    Shock formation and the ideal shape of ramp compression waves

    Full text link
    We derive expressions for shock formation based on the local curvature of the flow characteristics during dynamic compression. Given a specific ramp adiabat, calculated for instance from the equation of state for a substance, the ideal nonlinear shape for an applied ramp loading history can be determined. We discuss the region affected by lateral release, which can be presented in compact form for the ideal loading history. Example calculations are given for representative metals and plastic ablators. Continuum dynamics (hydrocode) simulations were in good agreement with the algebraic forms. Example applications are presented for several classes of laser-loading experiment, identifying conditions where shocks are desired but not formed, and where long duration ramps are desired

    Dual-barrel conductance micropipet as a new approach to the study of ionic crystal dissolution kinetics

    Get PDF
    A new approach to the study of ionic crystal dissolution kinetics is described, based on the use of a dual-barrel theta conductance micropipet. The solution in the pipet is undersaturated with respect to the crystal of interest, and when the meniscus at the end of the micropipet makes contact with a selected region of the crystal surface, dissolution occurs causing the solution composition to change. This is observed, with better than 1 ms time resolution, as a change in the ion conductance current, measured across a potential bias between an electrode in each barrel of the pipet. Key attributes of this new technique are: (i) dissolution can be targeted at a single crystal surface; (ii) multiple measurements can be made quickly and easily by moving the pipet to a new location on the surface; (iii) materials with a wide range of kinetics and solubilities are open to study because the duration of dissolution is controlled by the meniscus contact time; (iv) fast kinetics are readily amenable to study because of the intrinsically high mass transport rates within tapered micropipets; (v) the experimental geometry is well-defined, permitting finite element method modeling to allow quantitative analysis of experimental data. Herein, we study the dissolution of NaCl as an example system, with dissolution induced for just a few milliseconds, and estimate a first-order heterogeneous rate constant of 7.5 (±2.5) × 10–5 cm s–1 (equivalent surface dissolution flux ca. 0.5 μmol cm–2 s–1 into a completely undersaturated solution). Ionic crystals form a huge class of materials whose dissolution properties are of considerable interest, and we thus anticipate that this new localized microscale surface approach will have considerable applicability in the future

    The molecular and crystal structure of pentacarbonyl(phosphabenzene)molybdenum(0)

    Full text link
    Pentacarbonyl(phosphabenzene)molybdenum(0) crystallizes in the Pbam space group with Z = 8, a 15.880(4), b 20.162(4) and c 7.971(3) A. The crystal structure was determined and refined from 1404 independent reflections to R1 = 0.034. The pentacarbonylmolybdenum moiety is symmetrically coordinated to the phosphorus atom of the phosphabenzene ring, which closely resembles the free ligand in geometry.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/25737/3/0000294.pd
    • …
    corecore