4 research outputs found

    Cross-ancestry genetic investigation of schizophrenia, cannabis use disorder, and tobacco smoking

    No full text
    Individuals with schizophrenia frequently experience co-occurring substance use, including tobacco smoking and heavy cannabis use, and substance use disorders. There is interest in understanding the extent to which these relationships are causal, and to what extent shared genetic factors play a role. We explored the relationships between schizophrenia (Scz), cannabis use disorder (CanUD), and ever-regular tobacco smoking (Smk) using the largest available genome-wide studies of these phenotypes in individuals of African and European ancestries. All three phenotypes were positively genetically correlated (rgs = 0.17 - 0.62). Causal inference analyses suggested the presence of horizontal pleiotropy, but evidence for bidirectional causal relationships was also found between all three phenotypes even after correcting for horizontal pleiotropy. We identified 439 pleiotropic loci in the European ancestry data, 150 of which were novel (i.e., not genome-wide significant in the original studies). Of these pleiotropic loci, 202 had lead variants which showed convergent effects (i.e., same direction of effect) on Scz, CanUD, and Smk. Genetic variants convergent across all three phenotypes showed strong genetic correlations with risk-taking, executive function, and several mental health conditions. Our results suggest that both horizontal pleiotropy and causal mechanisms may play a role in the relationship between CanUD, Smk, and Scz, but longitudinal, prospective studies are needed to confirm a causal relationship.</p

    Associations Between Cannabis Use, Polygenic Liability for Schizophrenia, and Cannabis-related Experiences in a Sample of Cannabis Users

    No full text
    Background and hypothesisRisk for cannabis use and schizophrenia is influenced in part by genetic factors, and there is evidence that genetic risk for schizophrenia is associated with subclinical psychotic-like experiences (PLEs). Few studies to date have examined whether genetic risk for schizophrenia is associated with cannabis-related PLEs.Study designWe tested whether measures of cannabis involvement and polygenic risk scores (PRS) for schizophrenia were associated with self-reported cannabis-related experiences in a sample ascertained for alcohol use disorders (AUDs), the Collaborative Study on the Genetics of Alcoholism (COGA). We analyzed 4832 subjects (3128 of European ancestry and 1704 of African ancestry; 42% female; 74% meeting lifetime criteria for an AUD).Study resultsCannabis use disorder (CUD) was prevalent in this analytic sample (70%), with 40% classified as mild, 25% as moderate, and 35% as severe. Polygenic risk for schizophrenia was positively associated with cannabis-related paranoia, feeling depressed or anhedonia, social withdrawal, and cognitive difficulties, even when controlling for duration of daily cannabis use, CUD, and age at first cannabis use. The schizophrenia PRS was most robustly associated with cannabis-related cognitive difficulties (β = 0.22, SE = 0.04, P = 5.2e-7). In an independent replication sample (N = 1446), associations between the schizophrenia PRS and cannabis-related experiences were in the expected direction and not statistically different in magnitude from those in the COGA sample.ConclusionsAmong individuals who regularly use cannabis, genetic liability for schizophrenia-even in those without clinical features-may increase the likelihood of reporting unusual experiences related to cannabis use

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore