1,072 research outputs found

    Clustering of Galaxies in a Hierarchical Universe: III. Mock Redshift Surveys

    Full text link
    This is the third paper in a series which combines N-body simulations and semi-analytic modelling to provide a fully spatially resolved simulation of the galaxy formation and clustering processes. Here we extract mock redshift surveys from our simulations: a Cold Dark Matter model with either Omega_0=1 (tauCDM) or Omega_0=0.3 and Lambda=0.7 (LambdaCDM). We compare the mock catalogues with the northern region (CfA2N) of the Center for Astrophysics (CfA) Redshift Surveys. We study the properties of galaxy groups and clusters identified using standard observational techniques and we study the relation of these groups to real virialised systems. Most features of CfA2N groups are reproduced quite well by both models with no obvious dependence on Omega_0. Redshift space correlations and pairwise velocities are also similar in the two cosmologies. The luminosity functions predicted by our galaxy formation models depend sensitively on the treatment of star formation and feedback. For the particular choices of Paper I they agree poorly with the CfA survey. To isolate the effect of this discrepancy on our mock redshift surveys, we modify galaxy luminosities in our simulations to reproduce the CfA luminosity function exactly. This adjustment improves agreement with the observed abundance of groups, which depends primarily on the galaxy luminosity density, but other statistics, connected more closely with the underlying mass distribution, remain unaffected. Regardless of the luminosity function adopted, modest differences with observation remain. These can be attributed to the presence of the ``Great Wall'' in the CfA2N. It is unclear whether the greater coherence of the real structure is a result of cosmic variance, given the relatively small region studied, or reflects a physical deficiency of the models.Comment: 47 pages, LaTex, 17 figures, MNRAS, in press; one figure adde

    Clustering of Galaxies in a Hierarchical Universe: I. Methods and Results at z=0

    Full text link
    We introduce a new technique for following the formation and evolution of galaxies in cosmological N-body simulations. Dissipationless simulations are used to track the formation and merging of dark matter halos as a function of redshift. Simple prescriptions, taken directly from semi-analytic models of galaxy formation, are adopted for cooling, star formation, supernova feedback and the merging of galaxies within the halos. This scheme enables us to study the clustering properties of galaxies and to investigate how selection by type, colour or luminosity influences the results. In this paper, we study properties of the galaxy distribution at z=0. These include luminosity functions, colours, correlation functions, pairwise peculiar velocities, cluster M/L ratios and star formation rates. We focus on two variants of a CDM cosmology: a high- density model with Gamma=0.21 (TCDM) and a low-density model with Omega=0.3 and Lambda=0.7 (LCDM). Both are normalized to reproduce the I-band Tully-Fisher relation near a circular velocity of 220 km/s. Our results depend strongly both on this normalization and on the prescriptions for star formation and feedback. Very different assumptions are required to obtain an acceptable model in the two cases. For TCDM, efficient feedback is required to suppress the growth of galaxies low-mass field halos. Without it, there are too many galaxies and the correlation function turns over below 1 Mpc. For LCDM, feedback must be weak, otherwise too few L* galaxies are produced and the correlation function is too steep. Given the uncertainties in modelling some of the key physical processes, we conclude that it is not yet possible to draw conclusions about the values of cosmological parameters from studies of this kind. Further work on global star formation and feedback effects is required to narrow the range of possibilitiesComment: 43 pages, Latex, 16 figures included, 2 additional GIF format figures, submitted to MNRA

    Peculiar Velocities of Galaxy Clusters

    Full text link
    We investigate the peculiar velocities predicted for galaxy clusters by theories in the cold dark matter family. A widely used hypothesis identifies rich clusters with high peaks of a suitably smoothed version of the linear density fluctuation field. Their peculiar velocities are then obtained by extrapolating the similarly smoothed linear peculiar velocities at the positions of these peaks. We test these ideas using large high resolution N-body simulations carried out within the Virgo supercomputing consortium. We find that at early times the barycentre of the material which ends up in a rich cluster is generally very close to a high peak of the initial density field. Furthermore the mean peculiar velocity of this material agrees well with the linear value at the peak. The late-time growth of peculiar velocities is, however, systematically underestimated by linear theory. At the time clusters are identified we find their rms peculiar velocity to be about 40% larger than predicted. Nonlinear effects are particularly important in superclusters. These systematics must be borne in mind when using cluster peculiar velocities to estimate the parameter combination σ8Ω0.6\sigma_8\Omega^{0.6}.Comment: 8 pages, 4 figures; submitted to MNRA

    Automated detection of filaments in the large scale structure of the universe

    Full text link
    We present a new method to identify large scale filaments and apply it to a cosmological simulation. Using positions of haloes above a given mass as node tracers, we look for filaments between them using the positions and masses of all the remaining dark-matter haloes. In order to detect a filament, the first step consists in the construction of a backbone linking two nodes, which is given by a skeleton-like path connecting the highest local dark matter (DM) density traced by non-node haloes. The filament quality is defined by a density and gap parameters characterising its skeleton, and filament members are selected by their binding energy in the plane perpendicular to the filament. This membership condition is associated to characteristic orbital times; however if one assumes a fixed orbital timescale for all the filaments, the resulting filament properties show only marginal changes, indicating that the use of dynamical information is not critical for the method. We test the method in the simulation using massive haloes(M>1014M>10^{14}h1M^{-1}M_{\odot}) as filament nodes. The main properties of the resulting high-quality filaments (which corresponds to 33\simeq33% of the detected filaments) are, i) their lengths cover a wide range of values of up to 150150 h1^{-1}Mpc, but are mostly concentrated below 50h1^{-1}Mpc; ii) their distribution of thickness peaks at d=3.0d=3.0h1^{-1}Mpc and increases slightly with the filament length; iii) their nodes are connected on average to 1.87±0.181.87\pm0.18 filaments for 1014.1M\simeq 10^{14.1}M_{\odot} nodes; this number increases with the node mass to 2.49±0.28\simeq 2.49\pm0.28 filaments for 1014.9M\simeq 10^{14.9}M_{\odot} nodes.Comment: 17 pages, 13 figures, MNRAS Accepte
    corecore