We investigate the peculiar velocities predicted for galaxy clusters by
theories in the cold dark matter family. A widely used hypothesis identifies
rich clusters with high peaks of a suitably smoothed version of the linear
density fluctuation field. Their peculiar velocities are then obtained by
extrapolating the similarly smoothed linear peculiar velocities at the
positions of these peaks. We test these ideas using large high resolution
N-body simulations carried out within the Virgo supercomputing consortium. We
find that at early times the barycentre of the material which ends up in a rich
cluster is generally very close to a high peak of the initial density field.
Furthermore the mean peculiar velocity of this material agrees well with the
linear value at the peak. The late-time growth of peculiar velocities is,
however, systematically underestimated by linear theory. At the time clusters
are identified we find their rms peculiar velocity to be about 40% larger than
predicted. Nonlinear effects are particularly important in superclusters. These
systematics must be borne in mind when using cluster peculiar velocities to
estimate the parameter combination σ8Ω0.6.Comment: 8 pages, 4 figures; submitted to MNRA