289 research outputs found

    The Thermal Response of Downhill Skis

    Get PDF
    AbstractThe temperatures in downhill skies were measured with thermocouples to investigate the heat generation associated with the sliding of skis on snow. In these tests we investigated the effects on ski temperature of the ambient snow temperature, snow type, speed, load and thermal conductivity. A significant temperature rise at the base of the ski was found at the onset of motion in all runs. The temperature rise increased for heavier loads and at lower ambient temperatures. Some ski runs lasted long enough to observe a steady-state temperature at the ski base; it increased with ambient temperature. Longitudinal and transverse temperature variations occurred and were sensitive to snow hardness and skiing technique.We also investigated heat flow through the cross-section of the ski with a finite-element model to determine the effects of ski structure on heat retention at the base. We found that the thermal characteristics as determined by the structure of the ski had a significant effect on the temperature at the ski base. At lower temperatures we expect that friction will be greater in skis which have a large aluminum plate across their base. Steel edges have a lesser effect.</jats:p

    A Two-Threshold Model for Scaling Laws of Non-Interacting Snow Avalanches

    Full text link
    The sizes of snow slab failure that trigger snow avalanches are power-law distributed. Such a power-law probability distribution function has also been proposed to characterize different landslide types. In order to understand this scaling for gravity driven systems, we introduce a two-threshold 2-d cellular automaton, in which failure occurs irreversibly. Taking snow slab avalanches as a model system, we find that the sizes of the largest avalanches just preceeding the lattice system breakdown are power law distributed. By tuning the maximum value of the ratio of the two failure thresholds our model reproduces the range of power law exponents observed for land-, rock- or snow avalanches. We suggest this control parameter represents the material cohesion anisotropy.Comment: accepted PR

    Tight bounds for classical and quantum coin flipping

    Full text link
    Coin flipping is a cryptographic primitive for which strictly better protocols exist if the players are not only allowed to exchange classical, but also quantum messages. During the past few years, several results have appeared which give a tight bound on the range of implementable unconditionally secure coin flips, both in the classical as well as in the quantum setting and for both weak as well as strong coin flipping. But the picture is still incomplete: in the quantum setting, all results consider only protocols with perfect correctness, and in the classical setting tight bounds for strong coin flipping are still missing. We give a general definition of coin flipping which unifies the notion of strong and weak coin flipping (it contains both of them as special cases) and allows the honest players to abort with a certain probability. We give tight bounds on the achievable range of parameters both in the classical and in the quantum setting.Comment: 18 pages, 2 figures; v2: published versio

    No extension of quantum theory can have improved predictive power

    Get PDF
    According to quantum theory, measurements generate random outcomes, in stark contrast with classical mechanics. This raises the question of whether there could exist an extension of the theory which removes this indeterminism, as suspected by Einstein, Podolsky and Rosen (EPR). Although this has been shown to be impossible, existing results do not imply that the current theory is maximally informative. Here we ask the more general question of whether any improved predictions can be achieved by any extension of quantum theory. Under the assumption that measurements can be chosen freely, we answer this question in the negative: no extension of quantum theory can give more information about the outcomes of future measurements than quantum theory itself. Our result has significance for the foundations of quantum mechanics, as well as applications to tasks that exploit the inherent randomness in quantum theory, such as quantum cryptography.Comment: 6 pages plus 7 of supplementary material, 3 figures. Title changed. Added discussion on Bell's notion of locality. FAQ answered at http://perimeterinstitute.ca/personal/rcolbeck/FAQ.htm

    Causality - Complexity - Consistency: Can Space-Time Be Based on Logic and Computation?

    Full text link
    The difficulty of explaining non-local correlations in a fixed causal structure sheds new light on the old debate on whether space and time are to be seen as fundamental. Refraining from assuming space-time as given a priori has a number of consequences. First, the usual definitions of randomness depend on a causal structure and turn meaningless. So motivated, we propose an intrinsic, physically motivated measure for the randomness of a string of bits: its length minus its normalized work value, a quantity we closely relate to its Kolmogorov complexity (the length of the shortest program making a universal Turing machine output this string). We test this alternative concept of randomness for the example of non-local correlations, and we end up with a reasoning that leads to similar conclusions as in, but is conceptually more direct than, the probabilistic view since only the outcomes of measurements that can actually all be carried out together are put into relation to each other. In the same context-free spirit, we connect the logical reversibility of an evolution to the second law of thermodynamics and the arrow of time. Refining this, we end up with a speculation on the emergence of a space-time structure on bit strings in terms of data-compressibility relations. Finally, we show that logical consistency, by which we replace the abandoned causality, it strictly weaker a constraint than the latter in the multi-party case.Comment: 17 pages, 16 figures, small correction

    Random Numbers Certified by Bell's Theorem

    Full text link
    Randomness is a fundamental feature in nature and a valuable resource for applications ranging from cryptography and gambling to numerical simulation of physical and biological systems. Random numbers, however, are difficult to characterize mathematically, and their generation must rely on an unpredictable physical process. Inaccuracies in the theoretical modelling of such processes or failures of the devices, possibly due to adversarial attacks, limit the reliability of random number generators in ways that are difficult to control and detect. Here, inspired by earlier work on nonlocality based and device independent quantum information processing, we show that the nonlocal correlations of entangled quantum particles can be used to certify the presence of genuine randomness. It is thereby possible to design of a new type of cryptographically secure random number generator which does not require any assumption on the internal working of the devices. This strong form of randomness generation is impossible classically and possible in quantum systems only if certified by a Bell inequality violation. We carry out a proof-of-concept demonstration of this proposal in a system of two entangled atoms separated by approximately 1 meter. The observed Bell inequality violation, featuring near-perfect detection efficiency, guarantees that 42 new random numbers are generated with 99% confidence. Our results lay the groundwork for future device-independent quantum information experiments and for addressing fundamental issues raised by the intrinsic randomness of quantum theory.Comment: 10 pages, 3 figures, 16 page appendix. Version as close as possible to the published version following the terms of the journa

    Bell inequalities from no-signaling distributions

    Get PDF
    A Bell inequality is a constraint on a set of correlations whose violation can be used to certify non-locality. They are instrumental for device-independent tasks such as key distribution or randomness expansion. In this work we consider bipartite Bell inequalities where two parties have mAm_A and mBm_B possible inputs and give nAn_A and nBn_B possible outputs, referring to this as the (mA,mB,nA,nB)(m_A, m_B, n_A, n_B) scenario. By exploiting knowledge of the set of extremal no-signalling distributions, we find all 175 Bell inequality classes in the (4, 4, 2, 2) scenario, as well as providing a partial list of 18277 classes in the (4, 5, 2, 2) scenario. We also use a probabilistic algorithm to obtain 5 classes of inequality in the (2, 3, 3, 2) scenario, which we confirmed to be complete, 25 classes in the (3, 3, 2, 3) scenario, and a partial list of 21170 classes in the (3, 3, 3, 3) scenario. Our inequalities are given in supplementary files. Finally, we discuss the application of these inequalities to the detection loophole problem, and provide new lower bounds on the detection efficiency threshold for small numbers of inputs and outputs.Comment: 15 + 7 pages. v2: more scenarios are covered and more analysis has been done. v3: shorter title and a few additional updates, including summary table

    Therapeutic potential of TLR8 agonist GS-9688 (selgantolimod) in chronic hepatitis B: re-modelling of antiviral and regulatory mediators

    Get PDF
    Background & Aims: GS‐9688 (selgantolimod) is a toll‐like receptor 8 (TLR8) agonist in clinical development for the treatment of chronic hepatitis B (CHB). Antiviral activity of GS‐9688 has previously been evaluated in vitro in hepatitis B virus (HBV)‐infected hepatocytes and in vivo in the woodchuck model of CHB. Here we evaluated the potential of GS‐9688 to boost responses contributing to viral control and to modulate regulatory mediators. Approach & Results: We characterised the effect of GS‐9688 on immune cell subsets in vitro in PBMC of healthy controls and CHB patients. GS‐9688 activated dendritic cells and mononuclear phagocytes to produce IL‐12 and other immunomodulatory mediators, inducing a comparable cytokine profile in healthy controls and CHB patients. GS‐9688 increased the frequency of activated natural killer (NK) cells, mucosal‐associated invariant T‐cells (MAITs), CD4+ follicular helper T‐cells (TFH) and, in ~50% of patients, HBV‐specific CD8+T‐cells expressing interferon‐γ (IFNÎł). Moreover, in vitro stimulation with GS‐9688 induced NK cell expression of IFNÎł and TNFα and promoted hepatocyte lysis. We also assessed whether GS‐9688 inhibited immunosuppressive cell subsets that might enhance antiviral efficacy. Stimulation with GS‐9688 reduced the frequency of CD4+ regulatory T‐cells and monocytic myeloid‐derived suppressor cells (MDSC). Residual MDSC expressed higher levels of negative immune regulators, galectin‐9 and PD‐L1. Conversely, GS‐9688 induced an expansion of immunoregulatory TNF‐related apoptosis‐inducing ligand+ (TRAIL) regulatory NK cells and degranulation of arginase‐I+ polymorphonuclear‐MDSC (PMN‐MDSC). Conclusions: GS‐9688 induces cytokines in human PBMC that are able to activate antiviral effector function by multiple immune mediators (HBV‐specific CD8+T‐cells, TFH, NK cells and MAITs). Whilst reducing the frequency of some immunoregulatory subsets, it enhances the immunosuppressive potential of others, highlighting potential biomarkers and immunotherapeutic targets to optimise the antiviral efficacy of GS‐9688

    Quantum Tasks in Minkowski Space

    Full text link
    The fundamental properties of quantum information and its applications to computing and cryptography have been greatly illuminated by considering information-theoretic tasks that are provably possible or impossible within non-relativistic quantum mechanics. I describe here a general framework for defining tasks within (special) relativistic quantum theory and illustrate it with examples from relativistic quantum cryptography and relativistic distributed quantum computation. The framework gives a unified description of all tasks previously considered and also defines a large class of new questions about the properties of quantum information in relation to Minkowski causality. It offers a way of exploring interesting new fundamental tasks and applications, and also highlights the scope for a more systematic understanding of the fundamental information-theoretic properties of relativistic quantum theory

    Simulations of quantum double models

    Full text link
    We demonstrate how to build a simulation of two dimensional physical theories describing topologically ordered systems whose excitations are in one to one correspondence with irreducible representations of a Hopf algebra, D(G), the quantum double of a finite group G. Our simulation uses a digital sequence of operations on a spin lattice to prepare a ground "vacuum" state and to create, braid and fuse anyonic excitations. The simulation works with or without the presence of a background Hamiltonian though only in the latter case is the system topologically protected. We describe a physical realization of a simulation of the simplest non-Abelian model, D(S_3), using trapped neutral atoms in a two dimensional optical lattice and provide a sequence of steps to perform universal quantum computation with anyons. The use of ancillary spin degrees of freedom figures prominently in our construction and provides a novel technique to prepare and probe these systems.Comment: 24 pages, 2 figure
    • 

    corecore