43,943 research outputs found
A Solvable Model for Many Quark Systems in QCD Hamiltonians
Motivated by a canonical, QCD Hamiltonian we propose an effective Hamiltonian
to represent an arbitrary number of quarks in hadronic bags. The structure of
the effective Hamiltonian is discussed and the BCS-type solutions that may
represent constituent quarks are presented. The single particle orbitals are
chosen as 3-dimensional harmonic oscillators and we discuss a class of exact
solutions that can be obtained when a subset of single-particle basis states is
restricted to include a certain number of orbital excitations. The general
problem, which includes all possible orbital states, can also be solved by
combining analytical and numerical methods.Comment: 24 pages, 2 figures, research articl
A MERLIN Study of 6 GHz Excited-state OH & 6.7 GHz Methanol Masers in ON1
MERLIN observations of 6.668-GHz methanol and both 6.031- and 6.035-GHz
hydroxyl (OH) emission from the massive star-formation region ON1 are
presented. These are the first methanol observations made in full polarization
using 5 antennas of MERLIN, giving high resolution and sensitivity to extended
emission. Maser features are found to lie at the southern edge of the
ultra-compact HII region, following the known distribution of ground-state OH
masers. The masers cover a region ~1 arcsec in extent, lying perpendicular to
the H13CO+ bipolar outflow. Excited-state OH emission demonstrates consistent
polarization angles across the strongest linearly polarized features which are
parallel to the overall distribution. The linear polarizations vary between
10.0 and 18.5 per cent, with an average polarization angle of -60 deg +/- 28
deg. The strongest 6.668-GHz methanol features provide an upper limit to linear
polarization of ~1 per cent. Zeeman splitting of OH shows magnetic fields
between -1.1 to -5.8 mG, and a tentative methanol magnetic field strength of
-18 mG is measured.Comment: 10 Pages, 5 Figure
Momentum diffusion for coupled atom-cavity oscillators
It is shown that the momentum diffusion of free-space laser cooling has a
natural correspondence in optical cavities when the internal state of the atom
is treated as a harmonic oscillator. We derive a general expression for the
momentum diffusion which is valid for most configurations of interest: The atom
or the cavity or both can be probed by lasers, with or without the presence of
traps inducing local atomic frequency shifts. It is shown that, albeit the
(possibly strong) coupling between atom and cavity, it is sufficient for
deriving the momentum diffusion to consider that the atom couples to a mean
cavity field, which gives a first contribution, and that the cavity mode
couples to a mean atomic dipole, giving a second contribution. Both
contributions have an intuitive form and present a clear symmetry. The total
diffusion is the sum of these two contributions plus the diffusion originating
from the fluctuations of the forces due to the coupling to the vacuum modes
other than the cavity mode (the so called spontaneous emission term). Examples
are given that help to evaluate the heating rates induced by an optical cavity
for experiments operating at low atomic saturation. We also point out
intriguing situations where the atom is heated although it cannot scatter
light.Comment: More information adde
The Effect of Porosity on X-ray Emission Line Profiles from Hot-Star Winds
We investigate the degree to which the nearly symmetric form of X-ray
emission lines seen in Chandra spectra of early-type supergiant stars could be
explained by a possibly porous nature of their spatially structured stellar
winds. Such porosity could effectively reduce the bound-free absorption of
X-rays emitted by embedded wind shocks, and thus allow a more similar
transmission of red- vs. blue-shifted emission from the back vs. front
hemispheres. For a medium consisting of clumps of size l and volume filling
factor f, in which the `porosity length' h=l/f increases with local radius as h
= h' r, we find that a substantial reduction in wind absorption requires a
quite large porosity scale factor h' > 1, implying large porosity lengths h >
r. The associated wind structure must thus have either a relatively large scale
l~ r, or a small volume filling factor f ~ l/r << 1, or some combination of
these. The relatively small-scale, moderate compressions generated by intrinsic
instabilities in line-driving seem unlikely to give such large porosity
lengths, leaving again the prospect of instead having to invoke a substantial
(ca. factor 5) downward revision in assumed mass-loss rates.Comment: 6 pages in apj-emulate; 3 figures; submitted to Ap
Scaling properties of cavity-enhanced atom cooling
We extend an earlier semiclassical model to describe the dissipative motion
of N atoms coupled to M modes inside a coherently driven high-finesse cavity.
The description includes momentum diffusion via spontaneous emission and cavity
decay. Simple analytical formulas for the steady-state temperature and the
cooling time for a single atom are derived and show surprisingly good agreement
with direct stochastic simulations of the semiclassical equations for N atoms
with properly scaled parameters. A thorough comparison with standard free-space
Doppler cooling is performed and yields a lower temperature and a cooling time
enhancement by a factor of M times the square of the ratio of the atom-field
coupling constant to the cavity decay rate. Finally it is shown that laser
cooling with negligible spontaneous emission should indeed be possible,
especially for relatively light particles in a strongly coupled field
configuration.Comment: 7 pages, 5 figure
An HST/WFPC2 Survey of Bright Young Clusters in M31 III. Structural Parameters
Surface brightness profiles for 23 M31 star clusters were measured using
images from the Wide Field Planetary Camera 2 on the Hubble Space Telescope,
and fit to two types of models to determine the clusters' structural
properties. The clusters are primarily young (~10^8 yr) and massive (~10^4.5
solar masses), with median half-light radius 7 pc and dissolution times of a
few Gyr. The properties of the M31 clusters are comparable to those of clusters
of similar age in the Magellanic Clouds. Simulated star clusters are used to
derive a conversion from statistical measures of cluster size to half-light
radius so that the extragalactic clusters can be compared to young massive
clusters in the Milky Way. All three sets of star clusters fall approximately
on the same age-size relation. The young M31 clusters are expected to dissolve
within a few Gyr and will not survive to become old, globular clusters.
However, they do appear to follow the same fundamental plane relations as old
clusters; if confirmed with velocity dispersion measurements, this would be a
strong indication that the star cluster fundamental plane reflects universal
cluster formation conditions.Comment: AJ in press; 37 pages, 12 figure
High field magneto-transport in high mobility gated InSb/InAlSb quantum well heterostructures
We present high field magneto-transport data from a range of 30nm wide
InSb/InAlSb quantum wells. The low temperature carrier mobility of the samples
studied ranged from 18.4 to 39.5 m2V-1s-1 with carrier densities between
1.5x1015 and 3.28x1015 m-2. Room temperature mobilities are reported in excess
of 6 m2V-1s-1. It is found that the Landau level broadening decreases with
carrier density and beating patterns are observed in the magnetoresistance with
non-zero node amplitudes in samples with the narrowest broadening despite the
presence of a large g-factor. The beating is attributed to Rashba splitting
phenomenon and Rashba coupling parameters are extracted from the difference in
spin populations for a range of samples and gate biases. The influence of
Landau level broadening and spin-dependent scattering rates on the observation
of beating in the Shubnikov-de Haas oscillations is investigated by simulations
of the magnetoconductance. Data with non-zero beat node amplitudes are
accompanied by asymmetric peaks in the Fourier transform, which are
successfully reproduced by introducing a spin-dependent broadening in the
simulations. It is found that the low-energy (majority) spin up state suffers
more scattering than the high-energy (minority) spin down state and that the
absence of beating patterns in the majority of (lower density) samples can be
attributed to the same effect when the magnitude of the level broadening is
large
Relativistic Quantum Mechanics and Relativistic Entanglement in the Rest-Frame Instant Form of Dynamics
A new formulation of relativistic quantum mechanics is proposed in the
framework of the rest-frame instant form of dynamics with its instantaneous
Wigner 3-spaces and with its description of the particle world-lines by means
of derived non-canonical predictive coordinates. In it we quantize the frozen
Jacobi data of the non-local 4-center of mass and the Wigner-covariant relative
variables in an abstract (frame-independent) internal space whose existence is
implied by Wigner-covariance. The formalism takes care of the properties of
both relativistic bound states and scattering ones. There is a natural solution
to the \textit{relativistic localization problem}. The non-relativistic limit
leads to standard quantum mechanics but with a frozen Hamilton-Jacobi
description of the center of mass. Due to the \textit{non-locality} of the
Poincar\'e generators the resulting theory of relativistic entanglement is both
\textit{kinematically non-local and spatially non-separable}: these properties,
absent in the non-relativistic limit, throw a different light on the
interpretation of the non-relativistic quantum non-locality and of its impact
on foundational problems.Comment: 73 pages, includes revision
First principles based atomistic modeling of phase stability in PMN-xPT
We have performed molecular dynamics simulations using a shell model
potential developed by fitting first principles results to describe the
behavior of the relaxor-ferroelectric (1-x)PbMg1/3Nb2/3O3-xPbTiO3 (PMN-xPT) as
function of concentration and temperature, using site occupancies within the
random site model. In our simulations, PMN is cubic at all temperatures and
behaves as a polar glass. As a small amount of Ti is added, a weak polar state
develops, but structural disorder dominates, and the symmetry is rhombohedral.
As more Ti is added the ground state is clearly polar and the system is
ferroelectric, but with easy rotation of the polarization direction. In the
high Ti content region, the solid solution adopts ferroelectric behavior
similar to PT, with tetragonal symmetry. The ground state sequence with
increasing Ti content is R-MB-O-MC-T. The high temperature phase is cubic at
all compositions. Our simulations give the slope of the morphotropic phase
boundaries, crucial for high temperature applications. We find that the phase
diagram PMN-xPT can be understood within the random site model.Comment: 27 pages, 9 figure
- …