1,001 research outputs found

    Technology adoption in the BIM implementation for lean architectural practice

    Get PDF
    Justification for Research: the construction companies are facing barriers and challenges in BIM adoption as there is no clear guidance or best practice studies from which they can learn and build up their capacity for BIM use in order to increase productivity, efficiency, quality, and to attain competitive advantages in the global market and to achieve the targets in environmental sustainability. Purpose: this paper aims to explain a comprehensive and systemic evaluation and assessment of the relevant BIM technologies as part of the BIM adoption and implementation to demonstrate how efficiency gains have been achieved towards a lean architectural practice. Design/Methodology/Approach: The research is undertaken through a KTP (Knowledge transfer Partnership) project between the University of Salford and the John McCall Architects based in Liverpool, which is an SME (Small Medium Enterprise). The overall aim of KTP is to develop Lean Design Practice through the BIM adoption and implementation. The overall BIM implementation approach uses a socio-technical view in which it does not only consider the implementation of technology but also considers the socio-cultural environment that provides the context for its implementation. The technology adoption methodology within the BIM implementation approach is the action research oriented qualitative and quantitative research for discovery, comparison, and experimentation as the KTP project with JMA provides an environment for “learning by doing” Findings: research has proved that BIM technology adoption should be undertaken with a bottom-up approach rather than top-down approach for successful change management and dealing with the resistance to change. As a result of the BIM technology adoption, efficiency gains are achieved through the piloting projects and the design process is improved through the elimination of wastes and value generation. Originality/Value: successful BIM adoption needs an implementation strategy. However, at operational level, it is imperative that professional guidelines are required as part of the implementation strategy. This paper introduces a systematic approach for BIM technology adoption based on a case study implementation and it demonstrates a guideline at operational level for other SME companies of architectural practices

    Two-dimensional projections of an hypercube

    Get PDF
    We present a method to project a hypercube of arbitrary dimension on the plane, in such a way as to preserve, as well as possible, the distribution of distances between vertices. The method relies on a Montecarlo optimization procedure that minimizes the squared difference between distances in the plane and in the hypercube, appropriately weighted. The plane projections provide a convenient way of visualization for dynamical processes taking place on the hypercube.Comment: 4 pages, 3 figures, Revtex

    The Effect of Physiological Cyclic Stretch on the Cell Morphology, Cell Orientation and Protein Expression of Endothelial Cells

    Get PDF
    In vivo, endothelial cells are constantly exposed to pulsatile shear and tensile stresses. The main aim of this study was to design and build a physiological simulator, which reproduced homogenous strain profiles of the tensile strain experienced in vivo, and to investigate the effect of this cyclic tensile strain on the cell morphology, cell orientation and protein expression of endothelial cells. The biological response of human umbilical vein endothelial cells to a uniaxial cyclic stretch, in this newly developed simulator, was examined experimentally using immunohistostaining and confocal imaging and it was found that the cells elongated and oriented at 58.9± 4.5. This value was compared to a mathematical model where it was revealed that endothelial cells would orient at an angle of 60. This model also revealed that endothelial cells have an axial strain threshold value of 1.8% when exposed to a 10% cyclic strain at 1 Hz for 3 h. Cells cultured under conditions of cyclic strain showed increased ICAM-1 immunostaining when compared to static cells whereas, a marked decrease in the levels of VCAM-1 receptor staining was also observed. Haemodynamic stresses can modulate the endothelial cell adhesion response in vivo thus, taken together; this data validates the bioreactor as replicating the physiological environment

    Annotation of two large contiguous regions from the Haemonchus contortus genome using RNA-seq and comparative analysis with Caenorhabditis elegans

    Get PDF
    The genomes of numerous parasitic nematodes are currently being sequenced, but their complexity and size, together with high levels of intra-specific sequence variation and a lack of reference genomes, makes their assembly and annotation a challenging task. Haemonchus contortus is an economically significant parasite of livestock that is widely used for basic research as well as for vaccine development and drug discovery. It is one of many medically and economically important parasites within the strongylid nematode group. This group of parasites has the closest phylogenetic relationship with the model organism Caenorhabditis elegans, making comparative analysis a potentially powerful tool for genome annotation and functional studies. To investigate this hypothesis, we sequenced two contiguous fragments from the H. contortus genome and undertook detailed annotation and comparative analysis with C. elegans. The adult H. contortus transcriptome was sequenced using an Illumina platform and RNA-seq was used to annotate a 409 kb overlapping BAC tiling path relating to the X chromosome and a 181 kb BAC insert relating to chromosome I. In total, 40 genes and 12 putative transposable elements were identified. 97.5% of the annotated genes had detectable homologues in C. elegans of which 60% had putative orthologues, significantly higher than previous analyses based on EST analysis. Gene density appears to be less in H. contortus than in C. elegans, with annotated H. contortus genes being an average of two-to-three times larger than their putative C. elegans orthologues due to a greater intron number and size. Synteny appears high but gene order is generally poorly conserved, although areas of conserved microsynteny are apparent. C. elegans operons appear to be partially conserved in H. contortus. Our findings suggest that a combination of RNA-seq and comparative analysis with C. elegans is a powerful approach for the annotation and analysis of strongylid nematode genomes

    Neprilysin inhibition for pulmonary arterial hypertension: a randomized, double-blind, placebo-controlled, proof-of-concept trial

    Get PDF
    This is the peer reviewed version of the following article: Hobbs AJ, Moyes AJ, Baliga RS, et al. Neprilysin inhibition for pulmonary arterial hypertension: a randomized, double‐blind, placebo‐controlled, proof‐of‐concept trial. Br J Pharmacol. 2019. https://doi.org/10.1111/bph.14621, which has been published in final form at https://doi.org/10.1111/bph.14621. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived VersionsThis work was supported by a British Heart Foundation Project Grant (PG/11/88/28992) and the National Institutes for Health Research, Comprehensive Biomedical Research Centre award to UC

    On the statistical mechanics of prion diseases

    Full text link
    We simulate a two-dimensional, lattice based, protein-level statistical mechanical model for prion diseases (e.g., Mad Cow disease) with concommitant prion protein misfolding and aggregation. Our simulations lead us to the hypothesis that the observed broad incubation time distribution in epidemiological data reflect fluctuation dominated growth seeded by a few nanometer scale aggregates, while much narrower incubation time distributions for innoculated lab animals arise from statistical self averaging. We model `species barriers' to prion infection and assess a related treatment protocol.Comment: 5 Pages, 3 eps figures (submitted to Physical Review Letters

    Use and limitations of malaria rapid diagnostic testing by community health workers in war-torn Democratic Republic of Congo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurate and practical malaria diagnostics, such as immunochromatographic rapid diagnostic tests (RDTs), have the potential to avert unnecessary treatments and save lives. Volunteer community health workers (CHWs) represent a potentially valuable human resource for expanding this technology to where it is most needed, remote rural communities in sub-Saharan Africa with limited health facilities and personnel. This study reports on a training programme for CHWs to incorporate RDTs into their management strategy for febrile children in the Democratic Republic of Congo, a tropical African setting ravaged by human conflict.</p> <p>Methods</p> <p>Prospective cohort study, satisfaction questionnaire and decision analysis.</p> <p>Results</p> <p>Twelve CHWs were trained to safely and accurately perform and interpret RDTs, then successfully implemented rapid diagnostic testing in their remote community in a cohort of 357 febrile children. CHWs were uniformly positive in evaluating RDTs for their utility and ease of use. However, high malaria prevalence in this cohort (93% by RDTs, 88% by light microscopy) limited the cost-effectiveness of RDTs compared to presumptive treatment of all febrile children, as evidenced by findings from a simplified decision analysis.</p> <p>Conclusions</p> <p>CHWs can safely and effectively use RDTs in their management of febrile children; however, cost-effectiveness of RDTs is limited in zones of high malaria prevalence.</p

    A conceptual model for action and design research

    Get PDF
    Organizational research has a pattern of special characteristics which make a clear distinction from other research paradigms. When using these approaches – based on Action and Design – the Interpretivist, Constructivist, and Participatory perspectives dominate. They have already proven to have strong foundations, which turn these paradigmatic approaches into effective ways for getting knowledge, doing things, and promoting change within organizational settings. It combines the traditional scientific, engineering, and organization development approaches, depicting how an organization can, simultaneously, solve multidimensional problems and produce actionable knowledge, effective change and useful artifacts. It has been developed using a Design Science Research approach, tested in a major organizational change program (Henriques, 2015; Henriques & ONeill, 2014), and successfully used to teach research methods essentials to Master and DBA students.info:eu-repo/semantics/publishedVersio

    Site-specific metal and ligand substitutions in a microporous Mn(2+)-based metal-organic framework

    Get PDF
    First published online 16 Feb 2016The precise tuning of the structural and chem. features of microporous metal-org. frameworks (MOFs) is a crucial endeavour for developing materials with properties that are suitable for specific applications. In recent times, techniques for prepg. frameworks consisting of mixed-metal or ligand compns. have emerged. However, controlled spatial organization of the components within these structures at the mol. scale is a difficult challenge, particularly when species possessing similar geometries or chem. properties are used. Here, we describe the synthesis of mixed-metal and ligand variants possessing the Mn3L3 (Mn-MOF-1; H2L = bis(4-(4'-carboxyphenyl)-3,5-dimethylpyrazolyl)methane) structure type. In the case of mixed-ligand synthesis using a mixt. of L and its trifluoromethyl-functionalised deriv. (H2L' = bis(4-(4'-carboxyphenyl)-3,5-di(trifluoromethyl)pyrazolyl)methane), a mixed-ligand product in which the L' species predominanantly occupies the pillar sites lining the pores is obtained. Meanwhile, post-synthetic metal exchange of the parent Mn3L3 compd. using Fe2+ or Fe3+ ions results in cation exchange at the carboxylate clusters and metalation at the pillar bispyrazolate sites. The results demonstrate the versatility of the Mn3L3 structure type toward both metal and ligand substitutions, and the potential utility of site-specific functionalisations in achieving even greater precision in the tuning of MOFs. [on SciFinder(R)]Michael Huxley, Campbell J. Coghlan, Alexandre Burgun, Andrew Tarzia, Kenji Sumida, Christopher J. Sumby, and Christian J. Doona
    corecore