552 research outputs found

    A Lie algebra attached to a projective variety

    Get PDF
    Each choice of a K\"ahler class on a compact complex manifold defines an action of the Lie algebra \slt on its total complex cohomology. If a nonempty set of such K\"ahler classes is given, then we prove that the corresponding \slt-copies generate a semisimple Lie algebra. We investigate the formal properties of the resulting representation and we work things out explicitly in the case of complex tori, hyperk\"ahler manifolds and flag varieties. We pay special attention to the cases where this leads to a Jordan algebra structure or a graded Frobenius algebra.Comment: AMSTeX v2.1, 46 page

    Vapor wall deposition in Teflon chambers

    Get PDF
    Teflon chambers are ubiquitous in studies of atmospheric chemistry. Secondary organic aerosol (SOA) formation can be underestimated, owing to deposition of SOA-forming vapors to the chamber wall. We present here an experimental protocol and a model framework to constrain the vapor–wall interactions in Teflon chambers. We measured the wall deposition rates of 25 oxidized organic compounds generated from the photooxidation of isoprene, toluene, α-pinene, and dodecane in two chambers that had been extensively used and in two new unused chambers. We found that the extent of prior use of the chamber did not significantly affect the sorption behavior of the Teflon films. Among the 25 compounds studied, the maximum wall deposition rate is exhibited by the most highly oxygenated and least volatile compounds. By optimizing the model output to the observed vapor decay profiles, we identified that the dominant parameter governing the extent of wall deposition of a compound is its wall accommodation coefficient (α_(wi)), which can be correlated through its volatility with the number of carbons and oxygens in the molecule. By doing so, the wall-induced deposition rate of intermediate/semi-volatile organic vapors can be reasonably predicted based on their molecular constituency. The extent to which vapor wall deposition impacts measured SOA yields depends on the competition between uptake of organic vapors by suspended particles and the chamber wall. The timescale associated with vapor wall deposition can vary from minutes to hours depending on the value of α_(w,i). For volatile and intermediate volatility organic compounds (small α_(w,i)), gas-particle partitioning will dominate wall deposition for typical particle number concentrations in chamber experiments. For compounds characterized by relatively large α_(w,i), vapor transport to particles is suppressed by competition with the chamber wall even with perfect particle accommodation

    Studying Public Health Law::Principles, Politics, and Populations as Patients

    Get PDF
    Public health law is firmly establishing itself as a crucial area of scholarly inquiry. Its vital importance has been sharply underscored following the outbreak of COVID-19, in response to which we have seen the institution of extreme legal measures—suchas the UK’s Coronavirus Act 2020—in efforts to control and contain the spread ofthe disease. The pandemic has also starkly exposed the complex nature of the regulatory challenges, nationally, internationally, and globally, to which such public health problems give rise. In approaching these, and other questions concerning the public’s health, such as non-communicable disease, public health law, as a field, brings notable distinctive features: these include a practical focus on populations, institutions, the prevention of ill health, protection of good health, and thepromotion of positive states of well-being; and concomitant critical approaches rooted in theories of social justice as contrasted with more narrow biomedical ethics. Such features make it in some senses atypical territory within the field of health law. Furthermore, the inherent role of political institutions places law conceptually within public health in a way that may be seen as distinguishable from law’s relationship with clinical medicine. This chapter explains how the broad reach and distinct features of public health require a commensurately broad approach to conceptualising public health law, and how distinct practical and theoretical features may be integrated into academic public health law. It also shows how public health law, with its distinct conceptualisations concerning ‘the body’ of medical jurisprudence, can both challenge and enrich medico-legal studies, and bring important perspectives within the broader field of health law

    Observed aerosol effects on marine cloud nucleation and supersaturation

    Get PDF
    Aerosol particles in the marine boundary layer include primary organic and salt particles from sea spray and combustion-derived particles from ships and coastal cities. These particle types serve as nuclei for marine cloud droplet activation, although the particles that activate depend on the particle size and composition as well as the supersaturation that results from cloud updraft velocities. The Eastern Pacific Emitted Aerosol Cloud Experiment (EPEACE) 2011 was a targeted aircraft campaign to assess how different particle types nucleate cloud droplets. As part of E-PEACE 2011, we studied the role of marine particles as cloud droplet nuclei and used emitted particle sources to separate particle-induced feedbacks from dynamical variability. The emitted particle sources included shipboard smoke-generated particles with 0.05-1 μm diameters (which produced tracks measured by satellite and had drop composition characteristic of organic smoke) and combustion particles from container ships with 0.05-0.2 μm diameters (which were measured in a variety of conditions with droplets containing both organic and sulfate components) [1]. Three central aspects of the collaborative E-PEACE results are: (1) the size and chemical composition of the emitted smoke particles compared to ship-track-forming cargo ship emissions as well as background marine particles, with particular attention to the role of organic particles, (2) the characteristics of cloud track formation for smoke and cargo ships, as well as the role of multi-layered low clouds, and (3) the implications of these findings for quantifying aerosol indirect effects. For comparison with the E-PEACE results, the preliminary results of the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets (SOLEDAD) 2012 provided evidence of the cloud-nucleating roles of both marine organic particles and coastal urban pollution, with simultaneous measurements of the effective supersaturations of the clouds in the California coastal region

    Secondary Organic Aerosol Coating Formation and Evaporation: Chamber Studies Using Black Carbon Seed Aerosol and the Single-Particle Soot Photometer

    Get PDF
    We report a protocol for using black carbon (BC) aerosol as the seed for secondary organic aerosol (SOA) formation in an environmental chamber. We employ a single-particle soot photometer (SP2) to probe single-particle SOA coating growth dynamics and find that SOA growth on nonspherical BC aerosol is diffusion-limited. Aerosol composition measurements with an Aerodyne high resolution time-of-flight aerosol mass spectrometer (AMS) confirm that the presence of BC seed does not alter the composition of SOA as compared to self-nucleated SOA or condensed SOA on ammonium sulfate seed. We employ a 3-wavelength photoacoustic soot spectrometer (PASS-3) to measure optical properties of the systems studied, including fullerene soot as the surrogate BC seed, nucleated naphthalene SOA from high-NO_x photooxidation, and nucleated α-pinene SOA from low-NO_x photooxidation. A core-and-shell Mie scattering model of the light absorption enhancement is in good agreement with measured enhancements for both the low- and high-NO_x α-pinene photooxidation systems, reinforcing the assumption of a core-shell morphology for coated BC particles. A discrepancy between measured and modeled absorption enhancement factors in the naphthalene photooxidation system is attributed to the wavelength-dependence of refractive index of the naphthalene SOA. The coating of high-NO_x α-pinene SOA decreases after reaching a peak thickness during irradiation, reflecting a volatility change in the aerosol, as confirmed by the relative magnitudes of f_(43) and f_(44) in the AMS spectra. The protocol described here provides a framework by which future studies of SOA optical properties and single-particle growth dynamics may be explored in environmental chambers

    Observations of continental biogenic impacts on marine aerosol and clouds off the coast of California

    Get PDF
    During the 2011 Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) and 2013 Nucleation in California Experiment (NiCE) field campaigns, a predominantly organic aerosol (> 85% by mass) was observed in the free troposphere over marine stratocumulus off the coast of California. These particles originated from a densely forested region in the Northwestern United States. The organic mass spectrum resolved by positive matrix factorization is consistent with the mass spectra of previously measured biogenic organic aerosol. Particulate organic mass exhibits a latitudinal gradient that corresponds to the geographical distribution of vegetation density and composition, with the highest concentration over regions impacted by densely populated monoterpene sources. Due to meteorological conditions during summer months, cloud-clearing events transport aerosol from the Northwestern United States into the free troposphere above marine stratocumulus. Based on the variation of meteorological variables with altitude, dry air containing enhanced biogenic organic aerosol is shown to entrain into the marine boundary layer. Fresh impacts on cloud water composition are observed north of San Francisco, CA which is consistent with fresh continental impacts on the marine atmosphere at higher latitudes. Continental aerosol size distributions are bimodal. Particles in the 100 nm mode are impacted by biogenic sources, while particles in the ∼ 30 nm mode may originate from fresh biogenic emissions. Continental aerosol in the 100 nm mode is cloud condensation nuclei active and may play a role in modulating marine stratocumulus microphysics

    Maintained physical activity and physiotherapy in the management of distal upper limb pain – a protocol for a randomised controlled trial (the arm pain trial)

    Get PDF
    <b>Background</b><p></p> Distal upper limb pain (pain affecting the elbow, forearm, wrist, or hand) can be non-specific, or can arise from specific musculoskeletal disorders. It is clinically important and costly, the best approach to clinical management is unclear. Physiotherapy is the standard treatment and, while awaiting treatment, advice is often given to rest and avoid strenuous activities, but there is no evidence base to support these strategies. This paper describes the protocol of a randomised controlled trial to determine, among patients awaiting physiotherapy for distal arm pain, (a) whether advice to remain active and maintain usual activities results in a long-term reduction in arm pain and disability, compared with advice to rest; and (b) whether immediate physiotherapy results in a long-term reduction in arm pain and disability, compared with physiotherapy delivered after a seven week waiting list period.<p></p> <b>Methods/Design</b><p></p> Between January 2012 and January 2014, new referrals to 14 out-patient physiotherapy departments were screened for potential eligibility. Eligible and consenting patients were randomly allocated to one of the following three groups in equal numbers: 1) advice to remain active, 2) advice to rest, 3) immediate physiotherapy. Patients were and followed up at 6, 13, and 26 weeks post-randomisation by self-complete postal questionnaire and, at six weeks, patients who had not received physiotherapy were offered it at this time. The primary outcome is the proportion of patients free of disability at 26 weeks, as determined by the modified DASH (Disabilities of the Arm, Shoulder and Hand) questionnaire.<p></p> We hypothesise (a) that advice to maintain usual activities while awaiting physiotherapy will be superior than advice to rest the arm; and (b) that fast-track physiotherapy will be superior to normal (waiting list) physiotherapy. These hypotheses will be examined using an intention-to-treat analysis.<p></p> <b>Discussion</b><p></p> Results from this trial will contribute to the evidence base underpinning the clinical management of patients with distal upper limb pain, and in particular, will provide guidance on whether they should be advised to rest the arm or remain active within the limits imposed by their symptoms

    Organic aerosol formation from the reactive uptake of isoprene epoxydiols (IEPOX) onto non-acidified inorganic seeds

    Get PDF
    The reactive partitioning of cis and trans β-IEPOX was investigated on hydrated inorganic seed particles, without the addition of acids. No organic aerosol (OA) formation was observed on dry ammonium sulfate (AS); however, prompt and efficient OA growth was observed for the cis and trans β-IEPOX on AS seeds at liquid water contents of 40–75% of the total particle mass. OA formation from IEPOX is a kinetically limited process, thus the OA growth continues if there is a reservoir of gas-phase IEPOX. There appears to be no differences, within error, in the OA growth or composition attributable to the cis / trans isomeric structures. Reactive uptake of IEPOX onto hydrated AS seeds with added base (NaOH) also produced high OA loadings, suggesting the pH dependence for OA formation from IEPOX is weak for AS particles. No OA formation, after particle drying, was observed on seed particles where Na^+ was substituted for NH^(+)_(4). The Henry's Law partitioning of IEPOX was measured on NaCl particles (ionic strength ~9 M) to be 3 × 10^7 M atm^−1 (−50 / +100%). A small quantity of OA was produced when NH4+ was present in the particles, but the chloride (Cl-) anion was substituted for sulfate (SO^(2-)_(4)), possibly suggesting differences in nucleophilic strength of the anions. Online time-of-flight aerosol mass spectrometry and offline filter analysis provide evidence of oxygenated hydrocarbons, organosulfates, and amines in the particle organic composition. The results are consistent with weak correlations between IEPOX-derived OA and particle acidity or liquid water observed in field studies, as the chemical system is nucleophile-limited and not limited in water or catalyst activity

    Reactive Uptake and Photo-Fenton Oxidation of Glycolaldehyde in Aerosol Liquid Water

    Get PDF
    The reactive uptake and aqueous oxidation of glycolaldehyde were examined in a photochemical flow reactor using hydrated ammonium sulfate (AS) seed aerosols at RH = 80%. The glycolaldehyde that partitioned into the aerosol liquid water was oxidized via two mechanisms that may produce aqueous OH: hydrogen peroxide photolysis (H_(2)O_(2) + hν) and the photo-Fenton reaction (Fe_(II) + H_(2)O_(2) + hν). The uptake of 80 (±10) ppb glycolaldehyde produced 2–4 wt % organic aerosol mass in the dark (k_(H)* = (2.09–4.17) × 10^6 M atm^(–1)), and the presence of an OH source increased the aqueous uptake by a factor of 4. Although the uptake was similar in both OH-aging mechanisms, photo-Fenton significantly increased the degree of oxidation (O/C = 0.9) of the aerosols compared to H_(2)O_(2) photolysis (O/C = 0.5). Aerosol organics oxidized by photo-Fenton and H_(2)O_(2) photolysis resemble ambient “aged” and “fresh” OA, respectively, after the equivalent of 2 h atmospheric aging. No uptake or changes in particle composition occurred on dry seed aerosol. This work illustrates that photo-Fenton chemistry efficiently forms highly oxidized organic mass in aerosol liquid water, providing a possible mechanism to bridge the gap between bulk-phase experiments and ambient particles
    corecore