7 research outputs found
Clinical study and modeling of neuronal plasticity in patients with low grade diffuse gliomas who underwent awake surgery
Introduction Les gliomes de bas grade sont des tumeurs cĂ©rĂ©brales de progression lente qui affectent lâadulte jeune. Ce mode dâĂ©volution laisse le temps aux rĂ©seaux neuraux de se rĂ©organiser de façon massive ce qui permet dâexpliquer pourquoi les patients ne prĂ©sentent habituellement aucun dĂ©ficit neurologique au diagnostic bien que la tumeur concerne des zones dites «éloquentes». Ces lĂ©sions sont donc un sujet dâĂ©tude particuliĂšrement intĂ©ressant dans la comprĂ©hension des mĂ©canismes de plasticitĂ© cĂ©rĂ©brale.Ces patients bĂ©nĂ©ficient, comme traitement optimal, dâune chirurgie en condition Ă©veillĂ©e permettant une rĂ©section la plus importante possible tout en prĂ©servant les fonctions neurologiques du patient pour quâil conserve la meilleure qualitĂ© de vie possible.L'imagerie fonctionnelle de repos est un outil robuste en IRM pour Ă©tudier la connectivitĂ© fonctionnelle et la plasticitĂ© cĂ©rĂ©brale. Elle est basĂ©e sur lâanalyse du signal BOLD et prĂ©sente plusieurs avantages : 1) la possibilitĂ© dâĂȘtre rĂ©alisĂ©e chez des patients non coopĂ©rants 2) la possibilitĂ© dâanalyser lâensemble des rĂ©seaux neuraux simultanĂ©ment.Dans ce travail nous souhaitions mesurer les fluctuations de connectivitĂ© fonctionnelle durant la pĂ©riode pĂ©ri-opĂ©ratoire dâune chirurgie Ă©veillĂ©e pour gliome diffus de bas grade afin dâĂ©valuer la plasticitĂ© fonctionnelle engendrĂ©e par la rĂ©section de la tumeur.Dans un second temps, nous avons tentĂ© d'expliquer ces donnĂ©es fonctionnelles pĂ©ri-opĂ©ratoires Ă lâaide de lâimagerie multimodale en analysant lâĂ©volution pĂ©ri-opĂ©ratoire de la connectivitĂ© anatomique et des paramĂštres hĂ©modynamiques.MĂ©thodes Lâanalyse principale portait sur une cohorte de 82 patients porteurs de gliomes diffus de bas grade et opĂ©rĂ©s en chirurgie Ă©veillĂ©e. Pour chaque patient une IRM avec sĂ©quences fonctionnelles de repos Ă©tait rĂ©alisĂ©e Ă trois temps : prĂ©-opĂ©ratoire, post-opĂ©ratoire immĂ©diat et lors du suivi Ă 3 mois. Toutes les IRM Ă©taient effectuĂ©es pour chaque patient sur la mĂȘme machine au cours du suivi, soit un systĂšme IRM 3.0 Tesla (Skyra, Siemens), soit un systĂšme IRM 1.5 Tesla (Avanto, Siemens). AprĂšs des Ă©tapes classiques de prĂ©traitement, les donnĂ©es fonctionnelles Ă©taient traitĂ©es Ă lâaide du logiciel CONN v16.a.La connectivitĂ© anatomique a secondairement Ă©tĂ© analysĂ©e par imagerie de diffusion anisotropique en IRM en se concentrant sur le corps calleux.Enfin les consĂ©quences hĂ©modynamiques de la chirurgie Ă©taient Ă©valuĂ©es dâune part via des sĂ©quences de perfusion en IRM et dâautre part par une analyse innovante du signal BOLD.RĂ©sultatsNous avons constatĂ© de façon surprenante, durant la pĂ©riode post-opĂ©ratoire immĂ©diate, une altĂ©ration significative transitoire globale quasi-exclusive de la connectivitĂ© interhĂ©misphĂ©rique entre rĂ©gions miroirs, nommĂ©e connectivitĂ© homotopique.Des modifications de connectivitĂ© anatomique concernant le corps calleux et des modifications hĂ©modynamiques rĂ©gionales et globales ont Ă©galement Ă©tĂ© constatĂ©es de façon concomitante en pĂ©riode post-opĂ©ratoire immĂ©diate et Ă plus long terme aprĂšs la chirurgie sans quâun lien direct avec nos donnĂ©es fonctionnelles nâait pu ĂȘtre mis en Ă©vidence.Lâanalyse des donnĂ©es hĂ©modynamiques a enfin mis une lumiĂšre une rĂ©gion intĂ©ressante : le striatum. Cette structure pourrait ĂȘtre une rĂ©gion centrale dans le maintien de la connectivitĂ© homotopique et son atteinte alors mener aux modifications fonctionnelles observĂ©es.Conclusion La rupture dâhomotopie fonctionnelle transitoire que nous constatons en pĂ©riode post-opĂ©ratoire immĂ©diate est probablement dâorigine multifactorielle. La prise en compte des donnĂ©es anatomiques et hĂ©modynamiques, dans lâinterprĂ©tation des rĂ©sultats fonctionnelles en IRM, est indispensable tant en pĂ©riode post-opĂ©ratoire immĂ©diate que Ă plus long terme aprĂšs la chirurgie. Des travaux dâanalyse de la vasorĂ©activitĂ© cĂ©rĂ©brale dâune part et de modĂ©lisation dâautre part pourraient aider Ă mieux comprendre les diffĂ©rents phĂ©nomĂšnes intriquĂ©s.IntroductionDiffuse low-grade gliomas (DLGG) are slow-growing brain tumors occurring in young adults. This slow progression induces extensive neuroplasticity and explains why patients most of the time do not show any obvious neurological deficit at the time of diagnosis although tumors are located in âeloquentâ areas. Therefore DLGG provide an interesting model in understanding mechanisms of neuroplasticity.Awake surgery with direct cortical and subcortical electrostimulation mapping is recommended as first-line treatment of DLGG, allowing to maximize tumoral resection and limiting postoperative neurological deficit, maintaining patients quality of life.Resting-state fMRI, based on BOLD signal analysis, is used to study functional connectivity and neural plasticity. This technique allows robust evaluation of neural networks without performing a task. Consequently, it bypasses the impact of confusion, sedation or neurological deficits on task execution. In this thesis, we aimed to investigate perioperative functional connectivity modifications in order to evaluate neural plasticity after awake surgery.Subsequently we explained the functional results using multimodal MRI imaging to analyze anatomic connectivity and hemodynamic parameters.Methods82 patients with DLGG who underwent awake surgical resection were included in the principal study. MRI acquisitions were performed successively before, within 36 h after and three months post-surgery. All scans were executed on the same MRI magnet for each patient, i.e. either a 3.0 T magnet (Skyra, Siemens) or a 1.5 T magnet (Avanto, Siemens). First, data were preprossed using a standardized classical pipeline and analyzed with the CONN toolbox v16.a.Second, anatomic connectivity was evaluated using diffusion tensor imaging of the corpus callosum.Finally hemodynamic changes induced by surgery were assessed with traditional perfusion imaging as well as using an innovative analysis of the BOLD signalâ s temporal shift.ResultsSurprisingly, it was found that specifically a diffuse transient postoperative interhemispheric disconnectivity occurred between homologous regions, known as homotopic connectivity.In parallel, immediate and long-term postoperative alterations in the anatomic connectivity of the corpus callosum were observed. Immediate and long-term postoperative modifications were also found regarding both regional and global hemodynamics characteristics. Yet, no significant link between the homotopic connectivity findings and the anatomical and hemodynamic changes could have been established at this point.Nevertheless, the hemodynamic analysis allowed the identification of a a specific brain region : the striatum. It was hypothesized that it acts as a central region for the maintenance of homotopic connectivity, explaining simultaneously the decreased post-surgical homotopic connectivity observed.ConclusionThe highlighted transient postoperative functional homotopy is probably due to multifactorial causes To start entangling these causes, the use of anatomic and hemodynamic imaging data analyses seems crucial to interpret functional connectivity data both immediate and long-term postoperative.Cerebral vasoreactivity and modelling studies provide thereby a very promising tool to better understand the interrelated processes underlying postoperative functional connectivity modifications
Etude et modélisation de la plasticité cérébrale chez des patients porteurs de lésions gliales de bas grade opérés en chirurgie éveillée
IntroductionDiffuse low-grade gliomas (DLGG) are slow-growing brain tumors occurring in young adults. This slow progression induces extensive neuroplasticity and explains why patients most of the time do not show any obvious neurological deficit at the time of diagnosis although tumors are located in âeloquentâ areas. Therefore DLGG provide an interesting model in understanding mechanisms of neuroplasticity.Awake surgery with direct cortical and subcortical electrostimulation mapping is recommended as first-line treatment of DLGG, allowing to maximize tumoral resection and limiting postoperative neurological deficit, maintaining patients quality of life.Resting-state fMRI, based on BOLD signal analysis, is used to study functional connectivity and neural plasticity. This technique allows robust evaluation of neural networks without performing a task. Consequently, it bypasses the impact of confusion, sedation or neurological deficits on task execution. In this thesis, we aimed to investigate perioperative functional connectivity modifications in order to evaluate neural plasticity after awake surgery.Subsequently we explained the functional results using multimodal MRI imaging to analyze anatomic connectivity and hemodynamic parameters.Methods82 patients with DLGG who underwent awake surgical resection were included in the principal study. MRI acquisitions were performed successively before, within 36 h after and three months post-surgery. All scans were executed on the same MRI magnet for each patient, i.e. either a 3.0 T magnet (Skyra, Siemens) or a 1.5 T magnet (Avanto, Siemens). First, data were preprossed using a standardized classical pipeline and analyzed with the CONN toolbox v16.a.Second, anatomic connectivity was evaluated using diffusion tensor imaging of the corpus callosum.Finally hemodynamic changes induced by surgery were assessed with traditional perfusion imaging as well as using an innovative analysis of the BOLD signalâ s temporal shift.ResultsSurprisingly, it was found that specifically a diffuse transient postoperative interhemispheric disconnectivity occurred between homologous regions, known as homotopic connectivity.In parallel, immediate and long-term postoperative alterations in the anatomic connectivity of the corpus callosum were observed. Immediate and long-term postoperative modifications were also found regarding both regional and global hemodynamics characteristics. Yet, no significant link between the homotopic connectivity findings and the anatomical and hemodynamic changes could have been established at this point.Nevertheless, the hemodynamic analysis allowed the identification of a a specific brain region : the striatum. It was hypothesized that it acts as a central region for the maintenance of homotopic connectivity, explaining simultaneously the decreased post-surgical homotopic connectivity observed.ConclusionThe highlighted transient postoperative functional homotopy is probably due to multifactorial causes To start entangling these causes, the use of anatomic and hemodynamic imaging data analyses seems crucial to interpret functional connectivity data both immediate and long-term postoperative.Cerebral vasoreactivity and modelling studies provide thereby a very promising tool to better understand the interrelated processes underlying postoperative functional connectivity modifications.Introduction Les gliomes de bas grade sont des tumeurs cĂ©rĂ©brales de progression lente qui affectent lâadulte jeune. Ce mode dâĂ©volution laisse le temps aux rĂ©seaux neuraux de se rĂ©organiser de façon massive ce qui permet dâexpliquer pourquoi les patients ne prĂ©sentent habituellement aucun dĂ©ficit neurologique au diagnostic bien que la tumeur concerne des zones dites «éloquentes». Ces lĂ©sions sont donc un sujet dâĂ©tude particuliĂšrement intĂ©ressant dans la comprĂ©hension des mĂ©canismes de plasticitĂ© cĂ©rĂ©brale.Ces patients bĂ©nĂ©ficient, comme traitement optimal, dâune chirurgie en condition Ă©veillĂ©e permettant une rĂ©section la plus importante possible tout en prĂ©servant les fonctions neurologiques du patient pour quâil conserve la meilleure qualitĂ© de vie possible.L'imagerie fonctionnelle de repos est un outil robuste en IRM pour Ă©tudier la connectivitĂ© fonctionnelle et la plasticitĂ© cĂ©rĂ©brale. Elle est basĂ©e sur lâanalyse du signal BOLD et prĂ©sente plusieurs avantages : 1) la possibilitĂ© dâĂȘtre rĂ©alisĂ©e chez des patients non coopĂ©rants 2) la possibilitĂ© dâanalyser lâensemble des rĂ©seaux neuraux simultanĂ©ment.Dans ce travail nous souhaitions mesurer les fluctuations de connectivitĂ© fonctionnelle durant la pĂ©riode pĂ©ri-opĂ©ratoire dâune chirurgie Ă©veillĂ©e pour gliome diffus de bas grade afin dâĂ©valuer la plasticitĂ© fonctionnelle engendrĂ©e par la rĂ©section de la tumeur.Dans un second temps, nous avons tentĂ© d'expliquer ces donnĂ©es fonctionnelles pĂ©ri-opĂ©ratoires Ă lâaide de lâimagerie multimodale en analysant lâĂ©volution pĂ©ri-opĂ©ratoire de la connectivitĂ© anatomique et des paramĂštres hĂ©modynamiques.MĂ©thodes Lâanalyse principale portait sur une cohorte de 82 patients porteurs de gliomes diffus de bas grade et opĂ©rĂ©s en chirurgie Ă©veillĂ©e. Pour chaque patient une IRM avec sĂ©quences fonctionnelles de repos Ă©tait rĂ©alisĂ©e Ă trois temps : prĂ©-opĂ©ratoire, post-opĂ©ratoire immĂ©diat et lors du suivi Ă 3 mois. Toutes les IRM Ă©taient effectuĂ©es pour chaque patient sur la mĂȘme machine au cours du suivi, soit un systĂšme IRM 3.0 Tesla (Skyra, Siemens), soit un systĂšme IRM 1.5 Tesla (Avanto, Siemens). AprĂšs des Ă©tapes classiques de prĂ©traitement, les donnĂ©es fonctionnelles Ă©taient traitĂ©es Ă lâaide du logiciel CONN v16.a.La connectivitĂ© anatomique a secondairement Ă©tĂ© analysĂ©e par imagerie de diffusion anisotropique en IRM en se concentrant sur le corps calleux.Enfin les consĂ©quences hĂ©modynamiques de la chirurgie Ă©taient Ă©valuĂ©es dâune part via des sĂ©quences de perfusion en IRM et dâautre part par une analyse innovante du signal BOLD.RĂ©sultatsNous avons constatĂ© de façon surprenante, durant la pĂ©riode post-opĂ©ratoire immĂ©diate, une altĂ©ration significative transitoire globale quasi-exclusive de la connectivitĂ© interhĂ©misphĂ©rique entre rĂ©gions miroirs, nommĂ©e connectivitĂ© homotopique.Des modifications de connectivitĂ© anatomique concernant le corps calleux et des modifications hĂ©modynamiques rĂ©gionales et globales ont Ă©galement Ă©tĂ© constatĂ©es de façon concomitante en pĂ©riode post-opĂ©ratoire immĂ©diate et Ă plus long terme aprĂšs la chirurgie sans quâun lien direct avec nos donnĂ©es fonctionnelles nâait pu ĂȘtre mis en Ă©vidence.Lâanalyse des donnĂ©es hĂ©modynamiques a enfin mis une lumiĂšre une rĂ©gion intĂ©ressante : le striatum. Cette structure pourrait ĂȘtre une rĂ©gion centrale dans le maintien de la connectivitĂ© homotopique et son atteinte alors mener aux modifications fonctionnelles observĂ©es.Conclusion La rupture dâhomotopie fonctionnelle transitoire que nous constatons en pĂ©riode post-opĂ©ratoire immĂ©diate est probablement dâorigine multifactorielle. La prise en compte des donnĂ©es anatomiques et hĂ©modynamiques, dans lâinterprĂ©tation des rĂ©sultats fonctionnelles en IRM, est indispensable tant en pĂ©riode post-opĂ©ratoire immĂ©diate que Ă plus long terme aprĂšs la chirurgie. Des travaux dâanalyse de la vasorĂ©activitĂ© cĂ©rĂ©brale dâune part et de modĂ©lisation dâautre part pourraient aider Ă mieux comprendre les diffĂ©rents phĂ©nomĂšnes intriquĂ©s
Homotopic redistribution of functional connectivity in insula-centered diffuse low-grade glioma
International audienceObjective: In the event of neural injury, the homologous contralateral brain areas may play a compensatory role to avoid or limit the functional loss. However, this dynamic strategy of functional redistribution is not clearly established, especially in the pathophysiological context of diffuse low-grade glioma. Our aim here was to assess the extent to which unilateral tumor infiltration of the insula dynamically modulates the functional connectivity of the contralesional one.Methods: Using resting-state functional connectivity MRI, a seed-to-ROI approach was employed in 52 insula-centered glioma patients (n = 30 left and 22 right) compared with 19 age-matched healthy controls.Results: Unsurprisingly, a significant decrease of the inter-insular connectivity was observed in both patient groups. More importantly, the analyses revealed a significant increase of the contralesional insular connectivity towards both cerebral hemispheres, especially in cortical areas forming the visual and the sensorimotor networks. This functional redistribution was not identified when the analyses were performed on three control regions for which the homologous area was not impaired by the tumor. This overall pattern of results indicates that massive infiltration of the insular cortex causes a significant redeployment of the contralesional functional connectivity.Conclusion: This general finding suggests that the undamaged insula plays a role in the functional compensation usually observed in this patient population, and thus provides compelling support for the concept of homotopic functional plasticity in brain-damaged patients
Transient immediate postoperative homotopic functional disconnectivity in low-grade glioma patients
Background and purpose: The aim of this longitudinal study is to evaluate large-scale perioperative resting state networks reorganization in patients with diffuse low-grade gliomas following awake surgery. Materials and methods: Eighty-two patients with diffuse low-grade gliomas were prospectively enrolled and underwent awake surgical resection. Resting-state functional images were acquired at three time points: preoperative (MRI-1), immediate postoperative (MRI-2) and three months after surgery (MRI-3). We simultaneously performed perfusion-weighted imaging. Results: Comparing functional connectivity between MRI-1 and MRI-2, we observed a statistically significant functional homotopy decrease in cortical and subcortical supratentorial structures (PâŻ<âŻ0.05). A functional homotopy increase was observed between MRI-2 and MRI-3 in parietal lobes, cingulum and putamen (PâŻ<âŻ0.05). No significant functional connectivity modification was noticed between MRI-1 and MRI-3. Regional cerebral blood flow appeared transiently reduced on MRI-2 (PâŻ<âŻ0.05). No correlation between neurological deficit and interhemispheric connectivity results was found. Conclusion/interpretation: We found a supratentorial widely distributed functional homotopy disruption between preoperative and immediate postoperative time points with a complete restitution three months after surgery with simultaneous variation of regional cerebral blood flow. Keywords: Brain mapping, Functional neuroimaging, Glioma, Magnetic resonance imaging, Neuronal plasticity, Neurosurger
Cerebral Vasoreactivity as an Indirect MRI Marker of White Matter Tracts Alterations in Multiple Sclerosis
International audiencePatients with multiple sclerosis (MS) show a diffuse cerebral perfusion decrease, presumably related to multiple metabolism and vascular alterations. It is assumed that white matter fiber alterations cause a localized cerebral vasoreactivity (CVR) disruption through astrocytes metabolism alteration, leading to hypoperfusion. We proposed to (1) evaluate the CVR disruptions in MS, (2) in relation to white matter lesions and (3) compare CVR disruptions maps with standard imaging biomarkers. Thirty-five MS patients (10 progressive, 25 relapsing-remitting) and 22 controls underwent MRI with hypercapnic challenge, DTI imaging and neuropsychological assessment. Areas with disrupted CVR were assessed using a general linear model. Resulting maps were associated with clinical scores, compared between groups, and related to DTI metrics and white matter lesions. MS patients showed stronger disrupted CVR within supratentorial white matter, linking the left anterior insula to both the precentral gyrus and the right middle and superior frontal gyrus through the corpus callosum (Pâ<â0.05, FWE corrected). Patient's verbal intellectual quotient was negatively associated with a pathway linking both hippocampi to the ispilateral prefrontal cortex (Pâ<â0.05, FWE corrected). Disrupted CVR maps unrelated to DTI metrics and white matter lesions. We have demonstrated for the first time that white matter alterations can be indirectly identified through surrounding vessel alterations, and are related to clinical signs of MS. This offers a new, likely independent marker to monitor MS and supports a mediator role of the astrocytes in the fibers/vessels relationship
Diffuse low-grade glioma: What is the optimal linear measure to assess tumor growth?
International audienceBackground: Radiological follow-up of diffuse low-grade gliomas (LGGs) growth is challenging. Approximative visual assessment still predominates over objective quantification due to the complexity of the pathology. The infiltrating character, diffuse borders and presence of surgical cavities demand LGG-based linear measurement rules to efficiently and precisely assess LGG evolution over time.Methods: We compared optimized 1D, 2D, and 3D linear measurements with manual volume segmentation as a reference to assess LGG tumor growth in 36 patients with LGG (340 magnetic resonance imaging scans), using the clinically important mean tumor diameter (MTD) and the velocity diameter expansion (VDE). LGG-specific progression thresholds were established using the high-grade gliomas-based RECIST, Macdonald, and RANO criteria, comparing the sensitivity to identify progression/non-progression for each linear method compared to the ground truth established by the manual segmentation.Results: 3D linear volume approximation correlated strongly with manually segmented volume. It also showed the highest sensitivity for progression detection. The MTD showed a comparable result, whereas the VDE highlighted that caution is warranted in the case of small tumors with multiple residues. Novel LGG-specific progression thresholds, or the critical change in estimated tumor volume, were increased for the 3D (from 40% to 52%) and 2D methods (from 25% to 33%) and decreased for the 1D method (from 20% to 16%). Using the 3D method allowed a ~5-minute time gain.Conclusions: While manual volumetric assessment remains the gold standard for calculating growth rate, the 3D linear method is the best time-efficient standardized alternative for radiological evaluation of LGGs in routine use