1,851 research outputs found
Recommended from our members
Development and pilot testing of modular dynamic thermomechanical pulp mill model to develop energy reduction strategies. Final report
With the development of on-line and real-time process simulations, one obtains the ability to predict and control the process; thus, the opportunity exists to improve energy efficiency, decrease materials wastes, and maintain product quality. Developing this capability was the objective of the this research program. A thermomechanical pulp mill was simulated using both a first principles model and a neural network. The models made use of actual process data and a model that calculated the mass and energy balance of the mill was successfully implemented and run at the mill on an hourly basis. The attempt to develop a model that accurately predicted the quality of the pulp was not successful. It was concluded that the key fro a successful implementation of a real-time control model, such as a neural net model, is availability of on-line sensors that sufficiently characterize the pulp
Effect of Formation Hydrodynamics on Mechanical Properties of Container Materials
The objectives of this study were to compare the mechanical and physical properties of the sheets made using the Vortigen technology (a non-conventional technique that creates very high number vortices in a fluid flow mixture of water, fibers, and chemical additives) with those produced from a conventional method of papermaking and to provide insight into the impact of formation hydrodynamics on sheet properties. The results of formation, ultrasonic stiffness, and creep/accelerated creep measurements of the Vortigen sheets as compared with the standard sheets are presented. Samples of Vortigen (V) and standard (S) sheets (4 samples from each group) were obtained from papers produced on a pilot machine. Formation measurements (that provides a measure of density distribution in a sheet) were performed using a formation tester which is based on beta particle absorption. Measurements of creep and accelerated creep were made at a constant relative humidity (RH) of 80% and a cyclic RH between 30% and 80% for strips cut along the machine direction (MD) and cross machine direction (CD, which is perpendicular to MD) directions.
There was a significant difference between the distributions of basis weights for the two types of papers. The mean coefficient of variation in grammage for the V samples was 8.97 while that for the S samples was 12.60. The mean MD/CD stiffness ratios for the V and S samples were 1.1 and 1.6, respectively. The mean Z-direction longitudinal specific stiffness corresponding to the V samples were 18% greater than the corresponding value for the S samples. The MD strips from the S samples exhibited the smallest creep while the CD strips from the S samples exhibited the largest creep. Creep values corresponding to the Vortigen sheets were between the extreme values of the standard samples. The results of this study indicated that because of the influence of formation hydrodynamics on fiber orientation and formation, in general, the stiffness properties (and specifically the CD stiffness) of the Vortigen samples were greater than those of the standard samples
Fluctuations and scaling in creep deformation
The spatial fluctuations of deformation are studied in creep in the Andrade's
power-law and the logarithmic phases, using paper samples. Measurements by the
Digital Image Correlation technique show that the relative strength of the
strain rate fluctuations increases with time, in both creep regimes. In the
Andrade creep phase characterized by a power law decay of the strain rate
, with , the fluctuations obey
, with . The local
deformation follows a data collapse appropriate for an absorbing
state/depinning transition. Similar behavior is found in a crystal plasticity
model, with a jamming or yielding phase transition
Establishing the relationship between manufacturing and component performance in stretch formed thermoplastic composites
Flexible manufacturing methods are needed to reduce the cost of using advanced composites in structural applications. One method that allows for this is the stretch forming of long discontinuous fiber materials with thermoplastic matrices. In order to exploit this flexibility in an economical way, a thorough understanding of the relationship between manufacturing and component performance must be developed. This paper reviews some of the recent work geared toward establishing this understanding. Micromechanics models have been developed to predict the formability of the material during processing. The latest improvement of these models includes the viscoelastic nature of the matrix and comparison with experimental data. A finite element scheme is described which can be used to model the forming process. This model uses equivalent anisotropic viscosities from the micromechanics models and predicts the microstructure in the formed part. In addition, structural models have been built to account for the material property gradients that can result from the manufacturing procedures. Recent developments in this area include the analysis of stress concentrations and a failure model each accounting for the heterogeneous material fields
Understanding the impact and tackling the burden of osteoarthritis for Aboriginal and Torres Strait Islander people
Objective
The aim of this study was to understand and describe the lived experience of Aboriginal and Torres Strait Islander people with osteoarthritis.
Methods
Qualitative study guided by cultural security, which ensures that research is conducted in a way that will not compromise the cultural values, beliefs, and expectations of Aboriginal and Torres Strait Islander people. Participants were purposively sampled through the networks of project staff. Research yarns (a cultural form of conversation used as a data gathering tool) were conducted with 25 Aboriginal and Torres Strait Islander adults with self-reported osteoarthritis in Western Australia and Victoria, Australia. Data were analyzed using a framework approach and presented through composite storytelling (hypothetical stories representing an amalgam of participants’ experiences).
Results
Two composite stories were constructed to reflect themes relating to beliefs and knowledge, impact, coping, and health care experiences. Common beliefs held by participants were that osteoarthritis is caused by previous physically active lifestyles. Many participants feared for their future, increasing disability and needing a wheelchair. Pain associated with osteoarthritis impacted daily activities, sleep, work, family, and social life and cultural activities. Multidimensional impacts were often experienced within complex health or life circumstances and associated with increased anxiety and depression. Most participants reported negative health care experiences, characterized by poor patient–provider communication.
Conclusion
Our findings highlight that osteoarthritis is a multidimensional issue for Aboriginal and Torres Strait Islander people that permeates all aspects of life and highlights the need for integrated, multidisciplinary care that is culturally informed and individualized to patient need
Spatial fluctuations in transient creep deformation
We study the spatial fluctuations of transient creep deformation of materials
as a function of time, both by Digital Image Correlation (DIC) measurements of
paper samples and by numerical simulations of a crystal plasticity or discrete
dislocation dynamics model. This model has a jamming or yielding phase
transition, around which power-law or Andrade creep is found. During primary
creep, the relative strength of the strain rate fluctuations increases with
time in both cases - the spatially averaged creep rate obeys the Andrade law
, while the time dependence of the spatial
fluctuations of the local creep rates is given by . A similar scaling for the fluctuations is found in the logarithmic
creep regime that is typically observed for lower applied stresses. We review
briefly some classical theories of Andrade creep from the point of view of such
spatial fluctuations. We consider these phenomenological, time-dependent creep
laws in terms of a description based on a non-equilibrium phase transition
separating evolving and frozen states of the system when the externally applied
load is varied. Such an interpretation is discussed further by the data
collapse of the local deformations in the spirit of absorbing state/depinning
phase transitions, as well as deformation-deformation correlations and the
width of the cumulative strain distributions. The results are also compared
with the order parameter fluctuations observed close to the depinning
transition of the 2 Linear Interface Model or the quenched Edwards-Wilkinson
equation.Comment: 27 pages, 18 figure
Influence of light on bacterioplankton production and respiration in a subtropical coral reef
The influence of sunlight on bacterioplankton production [14C-leucine (Leu) and 3H-thymidine (TdR) incorporation; changes in cell abundances] and O2 consumption was investigated in a shallow subtropical coral reef located near Key Largo, Florida, USA. Quartz (light) and opaque (dark) glass biological oxygen demand (BOD) bottles containing 0.8 um filtered reef water amended with C, N and P were incubated in situ and exposed to natural variations in solar radiation over a 48 h period. Photoinhibition of Leu and TdR incorporation was observed at all depths during both daylight periods. Photoinhibition of bacterial production decreased with depth and was significantly higher during the first day of exposure. Bacterial abundances also decreased during daylight periods particularly during the second day of exposure. Leu and TdR incorporation rates and bacterial abundances exhibited recovery during periods of darkness. Light treatment bacterial O2 consumption was inhibited at all depths during Day 1 but enhanced relative to dark treatments at all depths during Day 2. Estimates of light treatment bacterial gross growth efficiencies (GGE) determined during the evening of Day 1 were similar to dark treatment estimates. Light treatment GGE determined during Day 2, however, were lower than dark treatments but increased with depth. Recovery of bacterial production and respiration during the second day of exposure suggested photoinduced selection for light tolerant cells and/or physiological adaptation to ambient light regimes occurred over the duration of exposure. The results of this experiment suggested that solar radiation may have a significant effect on bacterial metabolism in this shallow euphotic marine ecosystem.Peer reviewedMicrobiolog
Single Cell Analysis of Lymph Node Tissue from HIV-1 Infected Patients Reveals that the Majority of CD4<sup>+</sup> T-cells Contain One HIV-1 DNA Molecule
Genetic recombination contributes to the diversity of human immunodeficiency virus (HIV-1). Productive HIV-1 recombination is, however, dependent on both the number of HIV-1 genomes per infected cell and the genetic relationship between these viral genomes. A detailed analysis of the number of proviruses and their genetic relationship in infected cells isolated from peripheral blood and tissue compartments is therefore important for understanding HIV-1 recombination, genetic diversity and the dynamics of HIV-1 infection. To address these issues, we used a previously developed single-cell sequencing technique to quantify and genetically characterize individual HIV-1 DNA molecules from single cells in lymph node tissue and peripheral blood. Analysis of memory and naïve CD4+ T cells from paired lymph node and peripheral blood samples from five untreated chronically infected patients revealed that the majority of these HIV-1-infected cells (>90%) contain only one copy of HIV-1 DNA, implying a limited potential for productive recombination in virus produced by these cells in these two compartments. Phylogenetic analysis revealed genetic similarity of HIV-1 DNA in memory and naïve CD4+ T-cells from lymph node, peripheral blood and HIV-1 RNA from plasma, implying exchange of virus and/or infected cells between these compartments in untreated chronic infection
Can Doubly Strange Dibaryon Resonances be Discovered at RHIC?
The baryon-baryon continuum invariant mass spectrum generated from
relativistic nucleus + nucleus collision data may reveal the existence of
doubly-strange dibaryons not stable against strong decay if they lie within a
few MeV of threshold. Furthermore, since the dominant component of these states
is a superposition of two color-octet clusters which can be produced
intermediately in a color-deconfined quark-gluon plasma (QGP), an enhanced
production of dibaryon resonances could be a signal of QGP formation. A total
of eight, doubly-strange dibaryon states are considered for experimental search
using the STAR detector (Solenoidal Tracker at RHIC) at the new Relativistic
Heavy Ion Collider (RHIC). These states may decay to Lambda-Lambda and/or
proton-Cascade-minus, depending on the resonance energy. STAR's large
acceptance, precision tracking and vertex reconstruction capabilities, and
large data volume capacity, make it an ideal instrument to use for such a
search. Detector performance and analysis sensitivity are studied as a function
of resonance production rate and width for one particular dibaryon which can
directly strong decay to proton-Cascade-minus but not Lambda-Lambda. Results
indicate that such resonances may be discovered using STAR if the resonance
production rates are comparable to coalescence model predictions for dibaryon
bound states.Comment: 28 pages, 5 figures, revised versio
- …