5,936 research outputs found
Langevin dynamics in crossed magnetic and electric fields: Hall and diamagnetic fluctuations
Based on the classical Langevin equation, we have re-visited the problem of
orbital motion of a charged particle in two dimensions for a normal magnetic
field crossed with or without an in-plane electric bias. We are led to two
interesting fluctuation effects: First, we obtain not only a longitudinal
"work-fluctuation" relation as expected for a barotropic type system, but also
a transverse work-fluctuation relation perpendicular to the electric bias. This
"Hall fluctuation" involves the product of the electric and the magnetic
fields. And second, for the case of harmonic confinement without bias, the
calculated probability density for the orbital magnetic moment gives non-zero
even moments, not derivable as field derivatives of the classical free energy.Comment: 4 pages, 2 figures, revised versio
The State of the Parties (Sixth Edition)
Every four years, The State of the Parties brings readers up to date on party action in election years and in between. With the dual themes of continuity and change characterizing the new edition, this essential party primer includes: three new chapters on party roles in the 2008 election, a section on the impact of party resources for the campaign, extensive coverage of party mobilization efforts via the Internet and local activity, and new chapters covering topics ranging from Republicans\u27 fall from grace to party governance under Nancy Pelosi to President Obama\u27s role in party politics.https://ideaexchange.uakron.edu/state_of_the_parties6/1000/thumbnail.jp
Thermally activated escape rates of uniaxial spin systems with transverse field
Classical escape rates of uniaxial spin systems are characterized by a
prefactor differing from and much smaller than that of the particle problem,
since the maximum of the spin energy is attained everywhere on the line of
constant latitude: theta=const, 0 =< phi =< 2*pi. If a transverse field is
applied, a saddle point of the energy is formed, and high, moderate, and low
damping regimes (similar to those for particles) appear. Here we present the
first analytical and numerical study of crossovers between the uniaxial and
other regimes for spin systems. It is shown that there is one HD-Uniaxial
crossover, whereas at low damping the uniaxial and LD regimes are separated by
two crossovers.Comment: 4 PR pages, 3 figures, final published versio
Field dependence of the temperature at the peak of the ZFC magnetization
The effect of an applied magnetic field on the temperature at the maximum of
the ZFC magnetization, , is studied using the recently obtained
analytic results of Coffey et al. (Phys. Rev. Lett. {\bf 80}(1998) 5655) for
the prefactor of the N\'{e}el relaxation time which allow one to precisely
calculate the prefactor in the N\'{e}el-Brown model and thus the blocking
temperature as a function of the coefficients of the Taylor series expansion of
the magnetocrystalline anisotropy. The present calculations indicate that even
a precise determination of the prefactor in the N\'{e}el-Brown theory, which
always predicts a monotonic decrease of the relaxation time with increasing
field, is insufficient to explain the effect of an applied magnetic field on
the temperature at the maximum of the ZFC magnetization. On the other hand, we
find that the non linear field-dependence of the magnetization along with the
magnetocrystalline anisotropy appears to be of crucial importance to the
existence of this maximum.Comment: 14 LaTex209 pages, 6 EPS figures. To appear in J. Phys.: Condensed
Matte
Magnetic susceptibility of a CuO2 plane in the La2CuO4 system: I. RPA treatment of the Dzyaloshinskii-Moriya Interactions
Motivated by recent experiments on undoped La2CuO4, which found pronounced
temperature-dependent anisotropies in the low-field magnetic susceptibility, we
have investigated a two-dimensional square lattice of S=1/2 spins that interact
via Heisenberg exchange plus the symmetric and anti-symmetric
Dzyaloshinskii-Moriya anisotropies. We describe the transition to a state with
long-ranged order, and find the spin-wave excitations, with a mean-field
theory, linear spin-wave analysis, and using Tyablikov's RPA decoupling scheme.
We find the different components of the susceptibility within all of these
approximations, both below and above the N'eel temperature, and obtain evidence
of strong quantum fluctuations and spin-wave interactions in a broad
temperature region near the transition.Comment: 20 pages, 2 column format, 22 figure
Integral Relaxation Time of Single-Domain Ferromagnetic Particles
The integral relaxation time \tau_{int} of thermoactivating noninteracting
single-domain ferromagnetic particles is calculated analytically in the
geometry with a magnetic field H applied parallel to the easy axis. It is shown
that the drastic deviation of \tau_{int}^{-1} from the lowest eigenvalue of the
Fokker-Planck equation \Lambda_1 at low temperatures, starting from some
critical value of H, is the consequence of the depletion of the upper potential
well. In these conditions the integral relaxation time consists of two
competing contributions corresponding to the overbarrier and intrawell
relaxation processes.Comment: 8 pages, 3 figure
Equine Assisted Therapy and Changes in Gait for a Young Adult Female with Down Syndrome
The purpose of this study was to examine the effects of equine assisted therapy on selected gait parameters in a person with Down syndrome. One female participant with Down syndrome completed two therapeutic horseback riding programs, each consisting of six riding sessions. Specific gait characteristics were analyzed with a trend analysis of the data by examining the means of the different variables. The trend analysis revealed a difference in stride length as well as hip and knee angle. These results indicate that over the course of the two therapeutic horseback riding programs, changes in gait occurred. Therefore, therapeutic horseback riding may have the potential to benefit gait characteristics and stability in young adult females with Down syndrome; however, further research is warranted
Monte Carlo simulation with time step quantification in terms of Langevin dynamics
For the description of thermally activated dynamics in systems of classical
magnetic moments numerical methods are desirable. We consider a simple model
for isolated magnetic particles in a uniform field with an oblique angle to the
easy axis of the particles. For this model, a comparison of the Monte Carlo
method with Langevin dynamics yields new insight in the interpretation of the
Monte Carlo process, leading to the implementation of a new algorithm where the
Monte Carlo step is time-quantified. The numeric results for the characteristic
time of the magnetisation reversal are in excellent agreement with asymptotic
solutions which itself are in agreement with the exact numerical results
obtained from the Fokker-Planck equation for the Neel-Brown model.Comment: 5 pages, Revtex, 4 Figures include
Development and testing of laser Doppler system components for wake vortex monitoring. Volume 1: Scanner development, laboratory and field testing and system modeling
A servo-controlled range/elevation scanner for the laser Doppler velocimeter (LDV) was developed and tested in the field to assess its performance in detecting and monitoring aircraft trailing vortices in an airport environment. The elevation scanner provides a capability to manually point the LDV telescope at operator chosen angles from 3.2 deg. to 89.6 deg within 0.2 deg, or to automatically scan the units between operator chosen limits at operator chosen rates of 0.1 Hz to 0.5 Hz. The range scanner provides a capability to manually adjust the focal point of the system from a range of 32 meters to a range of 896 meters under operator control, or to scan between operator chosen limits and at rates from 0.1 Hz to 6.9 Hz. The scanner controls are designed to allow simulataneous range and elevation scanning so as to provide finger scan patterns, arc scan patterns, and vertical line scan patterns. The development and testing of the unit is discussed, along with a fluid dynamic model of the wake vortex developed in a laser Doppler vortex sensor simulation program
- …