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Based on the classical Langevin equation, we have re-visited the problem of orbital motion of a
charged particle in two dimensions for a normal magnetic field crossed with or without an in-plane
electric bias. We are led to two interesting fluctuation effects: First, we obtain not only a longitudinal
“work-fluctuation” relation as expected for a barotropic type system, but also a transverse work-
fluctuation relation perpendicular to the electric bias. This “Hall fluctuation” involves the product of
the electric and the magnetic fields. And second, for the case of harmonic confinement without bias,
the calculated probability density for the orbital magnetic moment gives non-zero even moments,
not derivable as field derivatives of the classical free energy.

PACS numbers: : 05.10.Gg, 05.40.-a, 75.20.-g, 75.47.-m

Consider the classical motion of a charged particle in a
plane under the influence of a normal (out-of-plane) mag-
netic field crossed in general with a parallel “in-plane”
electric field, in the presence of a dissipative coupling to
the environment (bath). This 2D motion has two notable
general features – first, the cyclotron circular orbits about
the magnetic field under the Lorentz force that classically
does no work, and second, there is the well known trans-
verse drift identified as the Hall effect which is a dis-
sipative transport (non-equilibrium) phenomenon. The
orbital motion holds surprises–the best known of these
being the absence of classical orbital diamagnetism in
equilibrium, as embodied in the classic theorem due to
Bohr and van Leeuwen, and, indeed, regarded by some
to be a surprise of theoretical physics [1]. A notable
point here is the subtle role played by the spatial con-
finement (the boundary) that interrupts the otherwise
complete circular (diamagnetic) orbits leading to a skip-
ping cuspidal motion at the boundary which is retrograde
(paramagnetic) and exactly cancels the bulk diamagnetic
contribution [2, 3, 4]. Diamagnetism, or rather its ab-
sence classically, [5] is, of course, a well known equilib-
rium phenomenon. We, however, find interesting fluctu-
ation effects here. Thus, while the orbital diamagnetic
moment is zero in the mean, its higher (even) moments
do exist under confinement, but can not be obtained as
field derivatives of the classical free energy. The other
surprising effect manifests in the non-equilibrium steady
state as a transverse work-fluctuation relation in addi-
tion to the well known longitudinal work-fluctuation the-
oretic results of much current interest [6, 7, 8, 9]. In
the light of these, we re-visit the classical problem of
orbital motion of a charged particle in two dimensions
in the presence of a normal magnetic field. First, we
will consider the work-fluctuations in the presence of a
parallel (in-plane) electric bias. Keeping in mind the
non-equilibrium steady-state situation of interest here,
we follow the Einsteinian statistical approach based on
the Langevin equation whose solution in the long-time

limit gives the non-equilibrium steady-state results for
the system driven externally (e.g., biased electrically).
The main results are the following: For non-zero elec-
tric bias, a “work fluctuation” expression obtains as, of
course, expected for a barotropic-type system. In addi-
tion, however, a transverse work-fluctuation is also ob-
tained perpendicular to the electric bias – a “Hall fluc-
tuation” theorem. This “Hall fluctuation” involves the
product of the electric and the magnetic fields. Inasmuch
as classically the magnetic field does no work on a mov-
ing charge, this cross effect (Hall fluctuation) seems to be
related to the time-reversal symmetry breaking effect of
the externally applied magnetic field. This is quite dis-
tinct from the time-reversal asymmetry (irreversibility)
arising out of dissipation. It is apt to point out at this
stage that the physical scheme we have in mind here is
experimentally an obvious variation on the well known
Haynes-Shockley [10] set-up for studying the drift con-
comitant with the spread (diffusion) of minority charge
carriers photo-injected in an electrically biased semicon-
ducting sample. Indeed, the fact that the minority car-
riers can disappear through the electron-hole recombina-
tion process, provides for a study of finite life-time effects
in our non-equilibrium steady state [3]. This should be
an interesting way of probing the effect of confinement, or
the boundary, that may not be effective when the carrier
life-time is very short.

Fluctuation theorem – The classical Hall bar : Con-
sider a classical 2D system of noninteracting electrons
(charge −e) under the externally applied crossed electric
and magnetic fields, in the presence of a dissipative envi-
ronment at temperature T (the bath) in the high friction
limit. Let the electric field (E) be in the x−direction
and the magnetic field (B) in the z−direction. We can
now write down the Langevin equations of motion for
the electron in the overdamped limit, i.e., ignoring the
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inertial effects [11] as:

γẋ = −eE −
eB

c
ẏ + ηx(t)

and γẏ =
eB

c
ẋ + ηy(t)

where γ is the friction coefficient due to the underlying
bath and ηx(t) and ηy(t) are the concomitant random
(stochastic) forces generated by the bath. The electrical
drift mobility is defined as e/γ for electrons. We assume
as usual the random forces to be Gaussian white noise
with 〈ηα,β(t)〉 = 0 and 〈ηα(t)ηβ(t′)〉 = η2

0
δ(t − t′) δαβ .

Here 〈. . .〉 denotes average over the stochastic ensemble at
time t. Solving the above two linearly coupled equations
for the velocities ẋ and ẏ, we obtain

ẋ =
β

1 + β2
{−

α

β
+

ηx(t)

βγ
−

ηy(t)

γ
} (1)

ẏ =
β

1 + β2
{−α +

ηx(t)

γ
+

ηy(t)

βγ
} (2)

with eB/γc = β and eE/γ = α. In the overdamped
limit, the information of the electron’s motion is cap-
tured in the probability distribution P (x, y, t) of the x-
and y-positions at time t. We are interested in finding
the marginal probability distributions (P (x, t), P (y, t))
of the displacements x and y respectively: P (x, t) =
∫

P (x, y, t)dy and P (y, t) =
∫

P (x, y, t)dx. From the
van Kampen lemma [12], we can write down a conti-
nuity equation for the marginal density π(x, t) evolving
stochastically under Eq.(1) with P (x, t) = 〈π(x, t)〉 as

∂π(x, t)

∂t
= −

∂

∂x
(ẋ π(x, t))

=
β

1 + β2

{α

β

∂π(x, t)

∂x
−

1

βγ

∂

∂x
(ηx(t)π(x, t))

+
1

γ

∂

∂x
(ηy(t)π(x, t))

}

(3)

The Fokker-Planck equation for the marginal probability
distribution P (x, t) is now obtained by the noise aver-
aging of Eq.(3). We apply Novikov theorem [12] for the
Gaussian noise and find

∂P (x, t)

∂t
=

α

1 + β2

∂P (x, t)

∂x
+

η2

0

2γ2(1 + β2)

∂2P (x, t)

∂x2
(4)

The last equation describes the diffusion of electrons
with drift. Similarly, the Fokker-Planck equation for the
marginal probability distribution P (y, t):

∂P (y, t)

∂t
=

αβ

1 + β2

∂P (y, t)

∂x
+

η2

0

2γ2(1 + β2)

∂2P (y, t)

∂y2
(5)

It is easier to solve the differential Eqs.(4,5) by the
Fourier transform method with initial conditions P (x, t =
0) = δ(x) and P (y, t = 0) = δ(y). It is given as

P (x, t) =

√

γ2(1 + β2)

2πη2

0
t

exp
{

−
γ2(1 + β2)

2η2

0
t

(

x +
α

1 + β2
t
)2}

The marginal probability density P (x, t) is a Gaussian
distribution with mean 〈x〉 = −αt/(1 + β2) and variance
(〈x2〉 − 〈x〉2) = η2

0
t/γ2(1 + β2). Here vxd = −α/(1 + β2)

is the drift velocity along the x−direction. It can also be
derived from Eq.(1) by taking ensemble average on both
sides. The above solution, of course, reduces to ordinary
diffusion in the limit E = 0 and B = 0 with the identifi-
cation η2

0
= 2Dγ2, where D is the diffusion constant. We

can now readily derive the usual barotropic-type work
fluctuation relation in the direction of electric field:

P (x, t)

P (−x, t)
= exp

{

−
2eγE

η2

0

x
}

= exp
{

−
eEx

KBT

}

(6)

with the Einstein relation, Dγ = kBT . The interpreta-
tion of the above relation is straightforward. Though the
system is always far from thermodynamic equilibrium (as
the electron continuously dissipates energy in the envi-
ronment), it reaches a mechanical equilibrium asymptot-
ically under the combined effect (forcing) of the electro-
magnetic fields and the viscous drag acting in opposition.
After the system attains the steady state, if the electron
is at a position x1, say, at t = 0, then P (x, t) is the condi-
tional probability of finding the particle at position x2 at
later time t with the displacement x = x2 − x1. Now, we
reverse the positions keeping time direction as before and
start at t = 0 from the position x2, then P (−x, t) is the
conditional probability of finding the particle at position
x1 at time t. The main feature of the relation (6) is that
right-hand side is time independent. The relation (6) can
also be derived from the eqilibrium probability distribu-
tion (depicting microscopic reversibility) [13]. Using now
the normalisation condition of the probability distribu-
tion, we obtain another useful relation from Eq.(6):

〈

exp
{ eEx

KBT

}〉

=

∫ ∞

−∞

exp
{ eEx

KBT

}

P (x, t)dx

=

∫ ∞

−∞

P (−x, t)dx = 1 (7)

The last two relations (Eq.(6),Eq.(7)) are similar to the
generalised fluctuation-dissipation theorems which were
derived in a very different context in Ref.[14].

Next, we investigate the rather novel and interesting
transverse fluctuations. Again, using the Fourier trans-
form method, we solve Eq.(5) for the marginal probabil-
ity distribution (P (y, t)) of y giving

P (y, t) =

√

γ2(1 + β2)

2πη2

0
t

exp
{

−
γ2(1 + β2)

2η2

0
t

(

y +
αβ

1 + β2
t
)2}

where the drift velocity along the y−direction is vyd =
−αβ/(1 + β2). The ratio of the probability densities for
the transverse fluctuations is given by

P (y, t)

P (−y, t)
= exp

{

−
e2EBy

cγKBT

}

= exp
{

−
eEy

KBT
β
}

(8)
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FIG. 1: (color online). Plot of the probability density P (M)
of Eq.(10) vs. magnetic moment M for different values of ϕ.
Here M is scaled by the Bohr magneton (µB).

where the interpretation of P (y, t) and P (−y, t) are sim-
ilar to that for the x-direction. We call the last relation
“Hall fluctuation” theorem –it involves the product of
the crossed electric and magnetic fields. The magnetic
field, of course, does no work on a charge moving in the
xy-plane. This cross “Hall fluctuation” effect can be re-
lated ultimately to the time-reversal symmetry breaking
effect of the applied magnetic field, which is different from
the time-irreversibility introduced through the dissipa-
tion (γ). We can interpret it variously as arriving from
the transverse Hall voltage (the Lorentz force), or effec-
tively as a magnetoresistance in the Hall geometry which
occurs due to the enhancement of the path length of elec-
tron’s motion caused by the magnetic field. Finally, we
give a generalised fluctuation-dissipation theorem-like ex-
pression in the presence of the magnetic field:

〈

exp
{ eEy

KBT
β
}〉

= 1

Diamagnetic f luctuations : Next, we turn to the dia-
magnetic fluctuations. We derive and briefly discuss the
classical equilibrium fluctuations of the orbital diamag-
netic moment (which is known to vanish identically in
the mean). More specifically, we find the equilibrium
probability density for the orbital magnetic moment of
a charged particle in two dimensions for a normal mag-
netic field and a harmonic confinement. The probability
density, when properly scaled, turns out to be universal
and peaked about a zero mean value. Here, however, we
must retain the inertial effect (non-zero electron mass).

Consider the orbital motion of the electron in the xy-
plane for the normal external uniform magnetic field B
along z−directions and a harmonic confinement in the

xy-plane of strength k0. The Hamiltonian

H =
1

2m
(px −

eBy

2c
)2 +

1

2m
(py +

eBx

2c
)2 +

1

2
k0(x

2 + y2)

where we have used the symmetric Landau gauge (A =
B×r/2) for the vector potential A. The orbital diamag-
netic momemt can be expressed as

M(t) =
−e

2c
(xẏ − yẋ)

=
−e

2mc

[

x(py +
eBx

2c
) − y(px −

eBy

2c
)
]

(9)

We are interested in the asymptotic (t → ∞) distribution
of M(t). Now, we can evaluate the probability density
P (M) of classical M in the limit t → ∞ (i.e. in equilib-
rium) through the usual method of finding the equilib-
rium distribution at finite temperature T :

P (M) =
1

Z

∫ ∞

−∞

..

∫ ∞

−∞

dx dy dpx dpy e−H/kBT

δ
(

M +
e

2mc

[

x(py +
eBx

2c
) − y(px −

eBy

2c
)
])

Here Z is a normalisation constant to be determined
through

∫ ∞

−∞
P (M)dM = 1 (infact Z is the equilibrium

partition function for this model). After some simple al-
gebra we obtain the probability density

P (M) =
1

2µB
(

~ω0

kBT
) exp

(

−
~ω0

kBT

|M |

µB

)

(10)

where µB = e~/2mc is the Bohr magneton and ω0 =
√

k0/m. As expected 〈M〉 = 0, i.e., orbital diamag-
netism is identically zero in a confined system. But,
we do find finite thermal fluctuations of the orbital dia-
magnetic moment in confinement. In FIG. 1, we plot
P (M) for different values of the dimentionless param-
eter ϕ = ~ω0/kBT . It is interesting to note that the
classical partition function (Z), and hence the free en-
ergy (−kBT lnZ) are independent of the magnetic field
B giving vanishing orbital diamagnetism in the mean.
But the moments of the orbital magnetic fluctuation of
even order are all non-zero. Clearly, then these orbital
magnetic moments can not be derived through the usual
field derivatives of the classical free energy as would be
the case for “permanent magnetic moments” intrinsic to
the particles. The classical equilibrium simulation of the
above model with the Langevin heat bath can be shown
to be consistent with the above thermal fluctuations of
the magnetic moments. We simulate the coupled set of
Langevin equations

mẍ = −γẋ −
eB

c
ẏ − k0x + ηx(t)

and mÿ = −γẏ +
eB

c
ẋ − k0y + ηy(t)

where again γ and η are respectively the friction and the
noise, related through 〈ηα(t)ηβ(t′)〉 = 2γkBTδ(t−t′) δαβ .
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FIG. 2: (color online). Plot of the probability density P (M)
vs. magnetic moment M obtained in simulation for same
values of ϕ as in FIG. 1. Peak of the curves decreases with
decreasing ϕ. We have used γ = 1, m = 1 and again M is
scaled by µB . Inset P (M) for ϕ = 1.0; and for different values
of γ and B showing no effect.

Here we use the velocity-Verlet algorithm for the time
evolution of the above equations and find steady-state
equilibrium distribution of the magnetic moment given
by Eq.(9). We plot the distribution P (M) in FIG. 2 for
the same parameter values of ϕ as in FIG. 1. Also, we
confirm through our simulation that the P (M) is inde-
pendent of γ and B (see inset of FIG. 2).

Concluding remarks : In this paper we have re-derived
a barotropic-type work-fluctuation relation along with a
new transverse fluctuation relation for the case of the
classical motion of a charged particle in static homoge-
neous crossed magnetic and electric fields in the presence
of dissipation. This is interesting inasmuch as classically
the magnetic field does no work on a moving charge par-
ticle. Recently, there have been some studies of fluctua-
tion theorems [15] in time-varying electromagnetic fields.
But, our approach and the context are quite different
from these. As our treatment is based on the classi-
cal Langevin equations involving stochastic fluctuating
forces and the concomitant dissipation that neglect quan-
tum statistics and the band structure effects [16], it is

expected to be appropriate for a material system which
is electronically non-degenerate, i.e., has a low carrier
density at a relatively high temperature, and has a low
carrier mobility. Clearly, a polar semiconductor with
strong electron-phonon interaction is indicated. The in-
ertial mass occurring in our Langevin equations is, of
course, to be replaced by the effective mass relevant to
the bottom (top) of the conduction (valence) band for the
electron (hole) as the band is expected to be close to be-
ing parabolic there. We have also derived the probability
density for the classical diamagnetic moment giving non-
zero orbital magnetic moments of even order. The latter
can not be obtained as field derivatives of the equilibrium
free energy which is clasically field independent.

One of us (D.R.) thanks A. Dhar and R. Marathe for
fruitful discussions.

∗ Electronic address: dibyendu@rri.res.in, nkumar@rri.res.in
[1] R. E. Peierls, Surprises in Theoretical Physics (Princeton

Univ.Press, Princeton, 1979), p. 99.
[2] C. G. Darwin, Proc. Cambridge Philos. Soc.27, 86

(1930).
[3] A. M. Jayannavar and N. Kumar, J. Phys. A 14, 1399

(1981).
[4] S. Dattagupta and J. Singh, Phys. Rev. Lett. 79, 961

(1997).
[5] J. H. Van Vleck, The Theory of Electric and Magnetic

Susceptibilities (Oxford University Press, London, 1932).
[6] For a review see, D. J. Evans and D. J. Searles, Adv.

Phys.51, 1529 (2002).
[7] C. Jarzynski, Phys. Rev. Lett.78, 2690 (1997).
[8] G. E. Crooks, Phys. Rev. E 60, 2721 (1999).
[9] O. Narayan and A. Dhar, J. Phys. A 37, 63 (2004).

[10] J. R. Haynes and W. Shockley, Physical Review 81, 835
(1951).

[11] W. T. Coffey, Yu. P. Kalmykov, and J. T. Waldron, The
Langevin Equation, 2nd ed. (World Scientific, Singapore,
2004).

[12] N. Kumar, Phys. Rev. B 31, 5513 (1985).
[13] R. D. Astumian, Am. J. Phys.74, 683 (2006).
[14] G. N. Bochkov and Y. E. Kuzovlev, Physica A 106, 443

1981.
[15] A. M. Jayannavar and M. Sahoo, Phys. Rev. E 75,

032102 (2007); Pramana-J. Phys. 70, 201 (2008).
[16] E. Bringuier, Eur. J. Phys. 27, 373 (2006)

mailto:dibyendu@rri.res.in, nkumar@rri.res.in

