28 research outputs found

    Quantitative analyses and modelling to support achievement of the 2020 goals for nine neglected tropical diseases

    Get PDF
    Quantitative analysis and mathematical models are useful tools in informing strategies to control or eliminate disease. Currently, there is an urgent need to develop these tools to inform policy to achieve the 2020 goals for neglected tropical diseases (NTDs). In this paper we give an overview of a collection of novel model-based analyses which aim to address key questions on the dynamics of transmission and control of nine NTDs: Chagas disease, visceral leishmaniasis, human African trypanosomiasis, leprosy, soil-transmitted helminths, schistosomiasis, lymphatic filariasis, onchocerciasis and trachoma. Several common themes resonate throughout these analyses, including: the importance of epidemiological setting on the success of interventions; targeting groups who are at highest risk of infection or re-infection; and reaching populations who are not accessing interventions and may act as a reservoir for infection,. The results also highlight the challenge of maintaining elimination 'as a public health problem' when true elimination is not reached. The models elucidate the factors that may be contributing most to persistence of disease and discuss the requirements for eventually achieving true elimination, if that is possible. Overall this collection presents new analyses to inform current control initiatives. These papers form a base from which further development of the models and more rigorous validation against a variety of datasets can help to give more detailed advice. At the moment, the models' predictions are being considered as the world prepares for a final push towards control or elimination of neglected tropical diseases by 2020

    Relax "Vitality in Practice" (VIP) project and design of an RCT to reduce the need for recovery in office employees

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is strong evidence to suggest that multiple work-related health problems are preceded by a higher need for recovery. Physical activity and relaxation are helpful in decreasing the need for recovery. This article aims to describe (1) the development and (2) the design of the evaluation of a daily physical activity and relaxation intervention to reduce the need for recovery in office employees.</p> <p>Methods/Design</p> <p>The study population will consist of employees of a Dutch financial service provider. The intervention was systematically developed, based on parts of the Intervention Mapping (IM) protocol. Assessment of employees needs was done by combining results of face-to-face interviews, a questionnaire and focus group interviews. A set of theoretical methods and practical strategies were selected which resulted in an intervention program consisting of Group Motivational Interviewing (GMI) supported by a social media platform, and environmental modifications. The Be Active & Relax program will be evaluated in a modified 2 X 2 factorial design. The environmental modifications will be pre-stratified and GMI will be randomised on department level. The program will be evaluated, using 4 arms: (1) GMI and environmental modifications; (2) environmental modifications; (3) GMI; (4) no intervention (control group). Questionnaire data on the primary outcome (need for recovery) and secondary outcomes (daily physical activity, sedentary behaviour, relaxation/detachment, work- and health-related factors) will be gathered at baseline (T0), at 6 months (T1), and at 12 months (T2) follow-up. In addition, an economic and a process evaluation will be performed.</p> <p>Discussion</p> <p>Reducing the need for recovery is hypothesized to be beneficial for employees, employers and society. It is assumed that there will be a reduction in need for recovery after 6 months and 12 months in the intervention group, compared to the control group. Results are expected in 2013.</p> <p>Trial registration</p> <p>Netherlands Trial Register (NTR): NTR2553</p

    Physical activity and relaxation in the work setting to reduce the need for recovery: what works for whom?

    No full text
    BACKGROUND: To recover from work stress, a worksite health program aimed at improving physical activity and relaxation may be valuable. However, not every program is effective for all participants, as would be expected within a "one size fits all" approach. The effectiveness of how the program is delivered may differ across individuals. The aim of this study was to identify subgroups for whom one intervention may be better suited than another by using a new method called QUalitative INteraction Trees (QUINT). METHODS: Data were used from the "Be Active & Relax" study, in which 329 office workers participated. Two delivery modes of a worksite health program were given, a social environmental intervention (group motivational interviewing delivered by team leaders) and a physical environmental intervention (environmental modifications). The main outcome was change in Need for Recovery (NFR) from baseline to 12 month follow-up. The QUINT method was used to identify subgroups that benefitted more from either type of delivery mode, by incorporating moderator variables concerning sociodemographic, health, home, and work-related characteristics of the participants. RESULTS: The mean improvement in NFR of younger office workers in the social environmental intervention group was significantly higher than younger office workers who did not receive the social environmental intervention (10.52; 95 % CI: 4.12, 16.92). Furthermore, the mean improvement in NFR of older office workers in the social environmental intervention group was significantly lower than older office workers who did not receive the social environmental intervention ( -10.65; 95 % CI: -19.35, -1.96). The results for the physical environmental intervention indicated that the mean improvement in NFR of office workers (regardless of age) who worked fewer hours overtime was significantly higher when they had received the physical environmental intervention than when they had not received this type of intervention (7.40; 95 % CI: 0.99, 13.81). Finally, for office workers who worked more hours overtime there was no effect of the physical environmental intervention. CONCLUSIONS: The results suggest that a social environmental intervention might be more beneficial for younger workers, and a physical environmental intervention might be more beneficial for employees with a few hours overtime to reduce the NFR. TRIAL REGISTRATION: NTR2553.status: publishe

    Objectively Measured Total and Occupational Sedentary Time in Three Work Settings.

    No full text
    BACKGROUND:Sedentary behaviour increases the risk for morbidity. Our primary aim is to determine the proportion and factors associated with objectively measured total and occupational sedentary time in three work settings. Secondary aim is to study the proportion of physical activity and prolonged sedentary bouts. METHODS:Data were obtained using ActiGraph accelerometers from employees of: 1) a financial service provider (n = 49 men, 31 women), 2) two research institutes (n = 30 men, 57 women), and 3) a construction company (n = 38 men). Total (over the whole day) and occupational sedentary time, physical activity and prolonged sedentary bouts (lasting ≄30 minutes) were calculated by work setting. Linear regression analyses were performed to examine general, health and work-related factors associated with sedentary time. RESULTS:The employees of the financial service provider and the research institutes spent 76-80% of their occupational time in sedentary behaviour, 18-20% in light intensity physical activity and 3-5% in moderate-to-vigorous intensity physical activity. Occupational time in prolonged sedentary bouts was 27-30%. Total time was less sedentary (64-70%), and had more light intensity physical activity (26-33%). The employees of the construction company spent 44% of their occupational time in sedentary behaviour, 49% in light, and 7% in moderate intensity physical activity, and spent 7% in sedentary bouts. Total time spent in sedentary behavior was 56%, 40% in light, and 4% in moderate intensity physical behaviour, and 12% in sedentary bouts. For women, low to intermediate education was the only factor that was negatively associated with occupational sedentary time. CONCLUSIONS:Sedentary behaviour is high among white-collar employees, especially in highly educated women. A relatively small proportion of sedentary time was accrued in sedentary bouts. It is recommended that worksite health promotion efforts should focus on reducing sedentary behaviour through improving light intensity physical activity

    Physical activity and relaxation in the work setting to reduce the need for recovery: what works for whom?

    No full text
    Abstract Background To recover from work stress, a worksite health program aimed at improving physical activity and relaxation may be valuable. However, not every program is effective for all participants, as would be expected within a “one size fits all” approach. The effectiveness of how the program is delivered may differ across individuals. The aim of this study was to identify subgroups for whom one intervention may be better suited than another by using a new method called QUalitative INteraction Trees (QUINT). Methods Data were used from the “Be Active & Relax” study, in which 329 office workers participated. Two delivery modes of a worksite health program were given, a social environmental intervention (group motivational interviewing delivered by team leaders) and a physical environmental intervention (environmental modifications). The main outcome was change in Need for Recovery (NFR) from baseline to 12 month follow-up. The QUINT method was used to identify subgroups that benefitted more from either type of delivery mode, by incorporating moderator variables concerning sociodemographic, health, home, and work-related characteristics of the participants. Results The mean improvement in NFR of younger office workers in the social environmental intervention group was significantly higher than younger office workers who did not receive the social environmental intervention (10.52; 95 % CI: 4.12, 16.92). Furthermore, the mean improvement in NFR of older office workers in the social environmental intervention group was significantly lower than older office workers who did not receive the social environmental intervention ( −10.65; 95 % CI: −19.35, −1.96). The results for the physical environmental intervention indicated that the mean improvement in NFR of office workers (regardless of age) who worked fewer hours overtime was significantly higher when they had received the physical environmental intervention than when they had not received this type of intervention (7.40; 95 % CI: 0.99, 13.81). Finally, for office workers who worked more hours overtime there was no effect of the physical environmental intervention. Conclusions The results suggest that a social environmental intervention might be more beneficial for younger workers, and a physical environmental intervention might be more beneficial for employees with a few hours overtime to reduce the NFR. Trial registration NTR255

    Effectiveness of a Worksite Social & Physical Environment Intervention on Need for Recovery, Physical Activity and Relaxation; Results of a Randomized Controlled Trial

    No full text
    <div><p>Objective</p><p>To investigate the effectiveness of a worksite social and physical environment intervention on need for recovery (i.e., early symptoms of work-related mental and physical fatigue), physical activity and relaxation. Also, the effectiveness of the separate interventions was investigated.</p><p>Methods</p><p>In this 2×2 factorial design study, 412 office employees from a financial service provider participated. Participants were allocated to the combined social and physical intervention, to the social intervention only, to the physical intervention only or to the control group. The primary outcome measure was need for recovery. Secondary outcomes were work-related stress (i.e., exhaustion, detachment and relaxation), small breaks, physical activity (i.e., stair climbing, active commuting, sport activities, light/moderate/vigorous physical activity) and sedentary behavior. Outcomes were measured by questionnaires at baseline, 6 and 12 months follow-up. Multilevel analyses were performed to investigate the effects of the three interventions.</p><p>Results</p><p>In all intervention groups, a non-significant reduction was found in need for recovery. In the combined intervention (n = 92), exhaustion and vigorous physical activities decreased significantly, and small breaks at work and active commuting increased significantly compared to the control group. The social intervention (n = 118) showed a significant reduction in exhaustion, sedentary behavior at work and a significant increase in small breaks at work and leisure activities. In the physical intervention (n = 96), stair climbing at work and active commuting significantly increased, and sedentary behavior at work decreased significantly compared to the control group.</p><p>Conclusion</p><p>None of the interventions was effective in improving the need for recovery. It is recommended to implement the social and physical intervention among a population with higher baseline values of need for recovery. Furthermore, the intervention itself could be improved by increasing the intensity of the intervention (for example weekly GMI-sessions), providing physical activity opportunities and exercise schemes, and by more drastic environment interventions (restructuring entire department floor).</p><p>Trial Registration</p><p>Nederlands Trial Register <a href="http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2553" target="_blank">NTR2553 </a></p></div

    Crude and adjusted effects on exhaustion, small breaks, stair climbing, active commuting, leisure activities, sport activities, vigorous physical activity, sedentary behavior at work between the intervention groups and control group found significant at 6 and/or 12 months follow-up.

    No full text
    A<p>minutes per week,</p>B<p>minutes per day. Adjusted for confounders age, gender, education, marital status, general health, job demands, supervisor support, and corresponding baseline measure of the outcome variable. Significant effects are in bold. A negative Bùta (B) means less exhaustion, small breaks, stair climbing, active commuting, leisure activities, sport activities, vigorous physical activity, sedentary behavior in the intervention group compared to the control group. [B =  Bùta, CI =  Confidence Interval, p-value is significant <0.05].</p><p>Crude and adjusted effects on exhaustion, small breaks, stair climbing, active commuting, leisure activities, sport activities, vigorous physical activity, sedentary behavior at work between the intervention groups and control group found significant at 6 and/or 12 months follow-up.</p

    Crude and adjusted overall effects in all secondary outcome measures between the intervention groups and the control group over a 12 months follow-up period.

    No full text
    A<p>minutes per week, <sup>B</sup>minutes per day. Adjusted for confounders age, gender, education, marital status, general health, job demands, supervisor support, and corresponding baseline measure of the outcome variable. Significant effects are in bold;. A negative Bùta (B) means less exhaustion, detachment and relaxation at work and after work, small breaks, stair climbing, active commuting, leisure activities, sports, light physical activity, moderate physical activity, vigorous physical activity and sedentary behavior in the intervention group compared to the control group. [B =  Bùta, CI =  Confidence Interval, p-value is significant <0.05].</p><p>Crude and adjusted overall effects in all secondary outcome measures between the intervention groups and the control group over a 12 months follow-up period.</p
    corecore