104 research outputs found

    Risk assessment to interpret the physiological host range of Hydrellia egeriae, a biocontrol agent for Egeria densa

    Get PDF
    Egeria densa Planchon (Hydrocharitaceae) is a submerged macrophyte native to South America. It forms part of a new suite of invasive aquatic plants that has benefited from open nutrient-rich freshwater systems following the successful biological control of floating aquatic plants in South Africa. The specificity of the leaf-mining fly, Hydrellia egeriae Rodrigues (Diptera: Ephydridae) was tested, using traditional laboratory host-specificity testing (i.e., no-choice and paired choice). Only one non-target species, Lagarosiphon major Deeming (Hydrocharitaceae) supported larval development during pair-choice tests. In order to avoid the rejection of a safe and potentially effective agent, continuation (i.e., multiple generations) tests were conducted to measure the ability of the non-target species to nutritionally support a population indefinitely. None of these species could sustain a viable agent population for more than three generations. Laboratory host-specificity tests are limited as they exempt certain insect-host behaviours. To enhance the interpretation of host-specificity results, a risk assessment was conducted using agent preference (i.e., choice tests) and performance (i.e., choice and continuation tests) results. The feeding and reproductive risk that H. egeriae poses to non-target species is below 2%. Based on these findings, permission for its release in South Africa has been obtained

    Climatic suitability and compatibility of the invasive Iris pseudacorus L.(Iridaceae) in the Southern Hemisphere: Considerations for biocontrol

    Get PDF
    Iris pseudacorus L. (Iridaceae) is an emergent macrophyte native to Europe, North Africa and western Asia. Considered invasive in wetland habitats around the world, this species is now the target of a biocontrol programme in the Southern Hemisphere. Native range surveys of the weed led to the selection of the flea beetle, Aphthona nonstriata Goeze (Coleoptera: Chrysomelidae), as a candidate biocontrol agent. An important aspect to consider in weed biocontrol is the ability of an agent to establish and thrive in the environment where it is released. Climatic incompatibility between source and intended release sites can in fact limit the success of a biocontrol programme. In the current study, the potential climatic niche of I. pseudacorus and A. nonstriata in the Southern Hemisphere was analysed. The ecological niche modelling software MaxEnt was used to map the climatic suitability of both organisms across invaded regions in South America, southern Africa and Australasia. Furthermore, occurrence records from each invaded range were used independently to model the climatic compatibility of I. pseudacorus in Europe, in order to prioritize areas of the native range to explore during future surveys for potential biocontrol agents. The models identified areas at high risk of invasion by I. pseudacorus in northern Argentina, Uruguay, southern Brazil and central Chile, as well as numerous provinces of eastern South Africa, Lesotho, southern Australia and New Zealand. Accordingly, the highest climatic suitability for A. nonstriata was predicted across the humid temperate climates of north-east Argentina, Uruguay, southern Brazil, southern South Africa, south-east Australia and New Zealand. These results can eventually be used in future release plans to prioritize areas where establishment and survival of the agent is expected to be highest. At the same time, it may be useful to search the native range of the weed for biological control agents showing high climatic adaptation towards the intended release sites of each invaded range. In this regards, our climatic compatibility models identified high-priority areas across the Mediterranean regions of Italy and southern France, as well as the temperate regions of central and western Europe. Altogether, the current study provides useful new information to tackle the invasion and advance the biocontrol programme of I. pseudacorus in the Southern Hemisphere

    Contrasting effects of climate change on the invasion risk and biocontrol potential of the invasive Iris pseudacorus L. between Northern and Southern Hemisphere

    Get PDF
    Iris pseudacorus is both a prized ornamental and an invasive aquatic plant that tends to grow dense monospecific stands, displacing the local vegetation and altering the hydrology of freshwater ecosystems. Originally from Europe, this species has historically invaded North America, China and Japan, and more recently spread through Argentina, South Africa and Australasia, where it is now a target for biological control. Field surveys within its native range have led to the selection of three candidate biocontrol agents. Prioritizing the best candidates for different regions constitutes a critical step, which could save significant time and resources before further cost-intensive experimental studies are conducted. Climate change is seldom taken into consideration in the prioritization process. In this regard, climatic suitability can be used to model the potential distributions of weeds and their candidate agents, both in space and time, thus allowing to identify areas at risk of invasion and predict where agents will be able to establish long-term. Accordingly, the objectives of this work were (i) to predict I. pseudacorus invasions and range shifts in the context of climate change; (ii) to identify wetland areas most at risk of invasion under present and future climatic conditions; and (iii) to prioritize the best suite of candidate biocontrol agents for different invaded ranges, worldwide. To do so, we modelled the present and future (2040–2060) climatic suitability of I. pseudacorus and its candidate agents using the software MaxEnt. Our results highlight a clear distinction between predictions for the Northern and Southern Hemispheres. In North America and eastern Asia, the area climatically suitable for I. pseudacorus is expected to increase and shift northwards. As for its biocontrol agents, very low suitability is predicted across these regions, further decreasing under future climatic conditions. On the other hand, climatically suitable areas for the plant in South America, southern Africa and Australasia are predicted, on average, to reduce in response to climate change. A decrease in climatic suitability is also expected for its candidate biocontrol agents which, however, would still maintain a significant range overlap with their host. These results can be used to prioritize areas most at risk of invasion and identify which combination of candidates could potentially provide the best level of control across different invaded ranges

    Risk assessment to interpret the physiological host range of Hydrellia egeriae, a biocontrol agent for Egeria densa

    Get PDF
    Egeria densa Planchon (Hydrocharitaceae) is a submerged macrophyte native to South America. It forms part of a new suite of invasive aquatic plants that has benefited from open nutrient-rich freshwater systems following the successful biological control of floating aquatic plants in South Africa. The specificity of the leaf-mining fly, Hydrellia egeriae Rodrigues (Diptera: Ephydridae) was tested, using traditional laboratory host-specificity testing (i.e., no-choice and paired choice). Only one non-target species, Lagarosiphon major Deeming (Hydrocharitaceae) supported larval development during pair-choice tests. In order to avoid the rejection of a safe and potentially effective agent, continuation (i.e., multiple generations) tests were conducted to measure the ability of the non-target species to nutritionally support a population indefinitely. None of these species could sustain a viable agent population for more than three generations. Laboratory host-specificity tests are limited as they exempt certain insect-host behaviours. To enhance the interpretation of host-specificity results, a risk assessment was conducted using agent preference (i.e., choice tests) and performance (i.e., choice and continuation tests) results. The feeding and reproductive risk that H. egeriae poses to non-target species is below 2%. Based on these findings, permission for its release in South Africa has been obtained

    Morphological variations in southern African populations of Myriophyllum spicatum: Phenotypic plasticity or local adaptation?

    Get PDF
    Variability in aquatic plant morphology is usually driven by phenotypic plasticity and local adaptations to environmental conditions experienced. This study aimed to elucidate which of these drivers is responsible for the morphological variation exhibited by three populations of Myriophyllum spicatum L. (Haloragaceae), a submerged aquatic plant whose status as native or exotic within southern Africa is uncertain. Individuals from three populations on the Vaal River (Northern Cape), Klipplaat River (Eastern Cape) and Lake Sibaya (KwaZulu-Natal) were grown under two nutrient treatments (high: 30 mg N/kg sediment and low: sediment only), while all other variables were kept the same. Morphological characteristics were measured at the start of the experiment to obtain a baseline morphology, and again eight weeks later. By the end of the experiment, the individuals from each population had responded to the different growing conditions. In most cases, the individuals from each population were significantly larger under the high nutrient treatment (Stem diameter: F(5,86) = 18.435, P is less than 0.001, Internode length: F(5,86) = 5.0747, P is less than 0.001, Leaf length: F(5,86) = 19.692, P is less than 0.001). Despite these differences in nutrient treatments, the growth pattern of each population remained true to the original starting point indicated by the lack of overlap between populations in the PCA groupings. This suggests that local adaptations are responsible for the differences in morphology between populations of M. spicatum, but shows that phenotypic plasticity does play a role as evidenced by individual responses to the different nutrient conditions. The development of these local adaptations within southern Africa suggests that the populations have had a long evolutionary history in the region and are relatively isolated with little reproductive mixing

    Toxic effect of herbicides used for water hyacinth control on two insects released for its biological control in South Africa

    Get PDF
    The integrated control of water hyacinth, Eichhornia crassipes (Martius) Solms- Laubach (Pontederiaceae) has become necessary in South Africa, as biological control alone is perceived to be too slow in controlling the weed. In total, seven insect biological control agents have been released on water hyacinth in South Africa. At the same time, herbicides are applied by the water authorities in areas where the weed continues to be troublesome. This study investigated the assumption that the two control methods are compatible by testing the direct toxicity of a range of herbicide formulations and surfactants on two of the biological control agents released against water hyacinth, the weevil, Neochetina eichhorniae Warner (Coleoptera: Curculionidae) and the water hyacinth mirid, Eccritotarsus catarinensis (Carvahlo) (Hemiptera: Miridae). A number of the formulations used resulted in significant mortality of the mirid and the weevil. Products containing 2,4-D amine and diquat as active ingredients caused higher mortality of both agents (up to 80% for the mirid) than formulations containing glyphosate. Furthermore, when surfactants were added to enhance herbicide efficiency, it resulted in increased toxicity to the insects. We recommend that glyphosate formulations should be used in integrated control programmes, and that surfactants be avoided in order to reduce the toxic nature of spray formulations to the insect biological control agents released against water hyacinth.Water Research Commission of South Africa (Project 915/1/01).http://www.tandfonline.com/loi/cbst20hb201

    Impact of nutrients and herbivory by Eccritotarsus catarinensis on the biological control of water hyacinth, Eichhornia crassipes

    Get PDF
    Many water hyacinth infestations in South Africa are the symptom of eutrophication, and as a result, biological control of this weed is variable. This study examined the effects of herbivory by the mirid, Eccritotarsus catarinensis, on water hyacinth grown at high, medium and low nitrogen (N) and phosphorus (P) nutrient concentrations. Water nutrient concentration appears to be the overriding factor affecting plant growth parameters of water hyacinth plants—at high nutrient concentrations, leaf and daughter plant production were more than double than at low nutrient concentrations, while stem length was twice as great at high nutrient concentrations compared to low concentrations. Chlorophyll content was also twice as high at high nutrient concentrations than low concentrations. Conversely, flower production at high nutrient concentrations was less than half that at low concentrations. Herbivory by E. catarinensis did not have as great an effect on water hyacinth vigour as nutrient concentration did, although it significantly reduced the production of daughter plants by 23 ± 9%, the length of the second petiole by 13 ± 5%, and chlorophyll content of water hyacinth leaves by 15 ± 6%. In terms of insect numbers, mirids performed better on plants grown under medium nutrient conditions (99 ± 28 S.E.), compared to high nutrient concentrations (52 ± 27 S.E.), and low nutrient concentrations (25 ± 30 S.E.). Thus, these results suggest that the fastest and most significant reduction in water hyacinth proliferation would be reached by lowering the water nutrient concentrations, and herbivory by E. catarinensis alone is not sufficient to reduce all aspects of water hyacinth vigour, especially at very high nutrient concentrations

    Chlorophyll fluorometry as a method of determining the effectiveness of a biological control agent in post-release evaluations

    Get PDF
    The impact of the planthopper Megamelus scutellaris, a biocontrol agent of water hyacinth in South Africa, was assessed using chlorophyll fluorometry in a greenhouse study under two different eutrophic nutrient treatments and agent densities (high and low). The results indicated that plants grown in low nutrients with high densities of M. scutellaris showed the greatest reduction in the fluorescence parameters Fv/Fm and PIabs. The successful use of chlorophyll fluorometry for the detection of subtle insect damage to water hyacinth leaves could have future application in post-release studies to measure the impact of M. scutellaris in the field

    First record of an indigenous South African parasitoid wasp on an imported biological control agent, the water hyacinth hopper

    Get PDF
    Water hyacinth, Pontederia crassipes (Martius) [≡Eichhornia crassip es (Martius) Solms-Laubach] (Pontederiaceae), is native to South America, but has expanded its range to many other regions of the world including South Africa. Megamelus scutellaris Berg (Hemiptera: Delphacidae) was released as a biological control agent and has established in several regions. Recently, the indigenous species Echthrodelphax migratorius Benoit, (Hymenoptera: Dryinidae) was discovered in South Africa parasitising M. scutellaris. This newly discovered relationship might have repercussions for the efficacy of biological control of water hyacinth by the delphacid. The wasp may negatively impact M. scutellaris populations making it difficult for the agent to successfully manage the invasive weed. Contrarily, the parasitoid may be beneficial by keeping the M. scutellaris populations stable, serving as a natural enemy

    From introduction to nuisance growth: A review of traits of alien aquatic plants which contribute to their invasiveness

    Get PDF
    Invasive alien aquatic plant species (IAAPs) cause serious ecological and economic impact and are a major driver of changes in aquatic plant communities. Their invasive success is influenced by both abiotic and biotic factors. Here, we summarize the existing knowledge on the biology of 21 IAAPs (four free-floating species, eight sediment-rooted, emerged or floating-leaved species, and nine sediment-rooted, submerged species) to highlight traits that are linked to their invasive success. We focus on those traits which were documented as closely linked to plant invasions, including dispersal and growth patterns, allelopathy and herbivore defence. The traits are generally specific to the different growth forms of IAAPs. In general, the species show effective dispersal and spread mechanisms, even though sexual and vegetative spread differs strongly between species. Moreover, IAAPs show varying strategies to cope with the environment. The presented overview of traits of IAAPs will help to identify potential invasive alien aquatic plants. Further, the information provided is of interest for developing species-specific management strategies and effective prevention measures
    • …
    corecore