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“Risk assessment to interpret the physiological host range of Hydrellia egeriae, a biocontrol 1 

agent for Egeria densa” 2 
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Abstract 4 

Egeria densa Planchon (Hydrocharitaceae) is a submerged macrophyte native to South 5 

America. It forms part of a new suite of invasive aquatic plants that has benefited from open 6 

nutrient-rich freshwater systems following the successful biological control (biocontrol) of 7 

floating aquatic plants in South Africa. The specificity of the leaf-mining fly, Hydrellia egeriae 8 

Rodrigues (Diptera: Ephydridae) was tested, using traditional laboratory host-specificity 9 

testing (i.e., no-choice and paired choice). Only one non-target species, Lagarosiphon major 10 

Deeming (Hydrocharitaceae) supported larval development during pair-choice tests. In order 11 

to avoid the rejection of a safe and potentially effective agent, continuation (i.e., multiple 12 

generations) tests were conducted to measure the ability of the non-target species to 13 

nutritionally support a population indefinitely. None of these species could sustain a viable 14 

agent population for more than three generations. Laboratory host-specificity tests are limited 15 

as they exempt certain insect-host behaviours. To enhance the interpretation of host-specificity 16 

results, a risk assessment was conducted using agent preference (i.e., choice tests) and 17 

performance (i.e., choice and continuation tests) results. The feeding and reproductive risk that 18 

H. egeriae poses to non-target species is below 2%. Based on these findings, permission for its 19 

release in South Africa has been obtained.  20 

Keywords  21 

Submerged aquatic weed; Ephydridae; continuation test; multiple generation test 22 

INTRODUCTION 23 

The aquatic weed Egeria densa Planchon (Hydrocharitaceae) is a freshwater plant, native to 24 

Brazil and temperate and subtropical areas of Argentina and Uruguay (Cook and Urmi-König 25 

1984). Egeria densa is considered a vigorous and highly invasive plant of freshwater 26 

ecosystems outside its native range, rapidly producing dense infestations and swiftly colonising 27 
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previously unaffected areas (Yarrow et al. 2009; Cabrera Walsh et al. 2013; Cook and Urmi-28 

König 1984). The successful control of aquatic invasive weeds can be difficult to achieve using 29 

traditional methods such as mechanical and chemical control, which are often only effective in 30 

the short-term. The physical removal of E. densa from waterways using water-level drawdowns 31 

or machinery can be counter-productive, facilitating the dispersal of the weed through 32 

fragmentation (Gettys et al. 2014; Hussner et al. 2017). In addition, the use of herbicide control 33 

in freshwater systems is increasingly deemed unsuitable due to its negative environmental 34 

effects on non-target species (Coetzee and Hill 2012). 35 

During a national review of invasive aquatic weeds in South Africa (Coetzee et al. 2011), E. 36 

densa was identified for biocontrol as part of a rapid response to its range expansion. Hydrellia 37 

egeriae Rodrigues (Diptera: Ephydridae) has been identified as a promising agent due to its 38 

wide distribution in the native range, as well as significant oviposition and feeding on E. densa. 39 

Native range host specificity tests were conducted to establish the potential safety of H. egeriae 40 

(Cabrera Walsh et al. 2013). The results revealed that H. egeriae showed a clear preference for 41 

E. densa; however, the fly also developed on two other species within the same family: Egeria 42 

naias Planchon, and Elodea callitrichoides Rich. Casp. Species from the genera Egeria and 43 

Elodea do not occur naturally in South Africa (Cabrera Walsh et al. 2013) and given the 44 

specificity and favourable developmental attributes of H. egeriae, the fly was imported into 45 

South Africa in September 2014 for quarantine host-specificity testing.  46 

Host-specificity testing forms the foundation of any biocontrol program. Despite the high 47 

safety record of released weed biocontrol agents (Hinz et al. 2019), concern for non-target 48 

effects by regulatory authorities, the general public and some scientists have been a major 49 

driving force for extensive refinement of host-specificity methodology. Traditional laboratory 50 

host-specificity tests include starvation (no-choice), choice, multi-choice and choice minus 51 

target tests, and less frequently used, continuation (i.e., multiple generation) tests and time 52 
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dependent tests (Marohasy 1998; van Driesche and Murray 2004). Choice tests although 53 

somewhat limited are valuable, creating a rank order of preference of plants that should be 54 

considered hosts. In some cases, further testing is required to examine the suitability of a host 55 

to support a biocontrol agent population over the long-term. Continuation tests are not common 56 

practice in classical biocontrol and often extend for long periods of time. These tests measure 57 

the ability of the host plant to nutritionally support a population indefinitely (Buckingham and 58 

Okrah 1993; Coetzee et al. 2003; Day et al. 2016). For example, choice tests with the sap-59 

sucking mirid, Eccritotarsus eichhorniae Henry (Hemiptera: Miridae), illustrated an 60 

oviposition preference for its host plant, Eichhornia crassipes (Martius) Solms-Laubach 61 

(Pontederiaceae) compared to its family member Pontederia cordata L. The number of 62 

progeny that developed on E. crassipes was 13 times higher than for P. cordata. However, 63 

nymphs did not show a clear preference for E. crassipes, and continuation tests indicated that 64 

P. cordata was suitable to maintain a viable population over five generations (Tipping et al. 65 

2018). Continuation tests can also tease out some of the limitations of laboratory host-66 

specificity testing (Marohasy 1998). Buckingham and Okrah (1993) used continuation tests to 67 

establish that the non-target species, Potamogeton crispus L. (Potamogetonaceae) was unable 68 

to sustain Hydrellia pakistanae Deonier (Diptera: Ephydridae), a biocontrol agent for Hydrilla 69 

verticillata (L.f.) Royle (Hydrocharitaceae), for more than eight generations. Following the 70 

agent’s release, there have been no records of fly damage to P. crispus in the field.  71 

Spill-over may occur temporarily where biocontrol agents cause a crash in the target weed 72 

population, and continuation tests can give an indication of how long the biocontrol agent could 73 

survive on the non-target species. It is important to note that continuation tests may fail to 74 

identify impact to non-target species when both target weed and non-target species overlap 75 

geographically. Therefore, short-term spill-over events have been simulated in pre-release 76 

experiments before. When transferred to non-target species after being fed with its target weed, 77 
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adult longevity and female fecundity of Bikasha collaris Baly. (Coleoptera: Chrysomelidae), a 78 

biocontrol agent for Chinese tallowtree (Triadica sebifera L.), was comparable to no-choice 79 

tests (Wheeler et al. 2017). Ultimately, all tests conducted should model the ecological context 80 

in which the agents will interact with the potential hosts (Louda et al., 2003; Briese 2005), and 81 

interpretation of results should be carefully considered to ensure they are representative of the 82 

natural host-range or field host specificity (Cullen 1990; Balciunas et al., 1996; Cruttwell 83 

McFadyen 2003, Marohasy 1998).  84 

Extrapolating laboratory results (i.e., the fundamental host range of the agent) to its realised 85 

host range can be challenging. Factors such as small cage sizes, bypassing steps in host location 86 

and agent experience or learning may produce agent behaviour that would not occur under 87 

natural conditions (Sheppard et al. 2005). Native range host-specificity testing is useful in 88 

making such predictions, but can be limited as it may not always include test species of the 89 

target region (Briese 2005). Risk assessment can enhance field-predictions of a potential 90 

biocontrol agent (Paynter et al. 2015). It uses the agent’s host-specificity results on non-target 91 

species relative to the target weed to calculate risk scores. These scores represent the feeding 92 

and developmental risk that the agent poses to each non-target species in the field (Wan and 93 

Harris 1997). Because risk assessment scores are standardized and easier to interpret, they can 94 

also be used as a tool to better communicate laboratory results to regulatory authorities, 95 

stakeholders and the general public.  96 

In this study, in addition to choice and no-choice tests, we also conducted continuation tests to 97 

determine if non-target species used during choice-tests are physiologically suitable to sustain 98 

agent populations in the field. We also used risk assessment to determine the risk of releasing 99 

H. egeriae. In this paper, we present the results of host specificity tests on H. egeriae, together 100 

with a risk assessment pertaining to the release of H. egeriae in South Africa. 101 
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MATERIAL AND METHODS 102 

Host plant culture 103 

Plant material was collected throughout the years 2014 and 2015 from the Kouga River, 104 

Patensie, Eastern Cape (S 33°44ʹ54.622ʺ; E 24°38ʹ7.605ʺ) and cultured in a flow-through 105 

system in a polytunnel at the Waainek CBC Facility in Grahamstown. Thirty shoots, 20cm in 106 

length, were individually planted in 13.5l round tubs (41cm x 41cm x 24cm) with pond 107 

sediment and the slow release fertilizer MulticoteTM (Haifa) at a ratio of 0.7g per 1kg sediment. 108 

A 1cm silica sand layer was placed over the sediment to minimize water clouding and algal 109 

growth. Planted tubs were placed in 600l tanks connected to a flow-system. Plants were given 110 

a fluid nutrient stock solution every third month that consisted of calcium chloride (91.7mg/l), 111 

magnesium sulphate (69.0mg/l), sodium bicarbonate (58.4mg/l) and potassium bicarbonate 112 

(15.4mg/l) (Smart and Barko 1985). Plant material from this E. densa culture was used for all 113 

of the experiments in this study.  114 

Insect culture 115 

In September 2014, H. egeriae was imported under permit (P0063110) from the Exotic and 116 

Invasive Weeds Research (EIW) facility of the Agricultural Research Service in California, 117 

USA to the Rhodes University Quarantine Facility. The founder culture was initiated in May, 118 

2013 from one shipment that contained individuals from four different populations in 119 

Argentina (John Herr, pers. comm.; Guillermo Cabrera Walsh pers. comm.).  120 

Biology of Hydrellia egeriae 121 

Adults are between 1.3mm to 3.0mm in size, live on the water surface and feed on fungi, yeast, 122 

nectar and small and/or trapped insects. Females oviposit eggs on protruding E. densa leaves 123 

and have a lifespan of about 13 days (at 22°C). Hydrellia egeriae immatures are fully aquatic 124 

and undergo three instars during which they mine on the photosynthetic tissue of E. densa 125 
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leaves. Larvae mine on average 24.5 leaves. After 16 days of feeding, the third instar undergoes 126 

a non-feeding pre-pupa stage, before pupariation within an E. densa leaf. Adults emerge after 127 

10 days and float to the water surface in an air bubble.  128 

In order to start a culture of the potential control agent in South Africa, H. egeriae larvae were 129 

placed in transparent boxes (41cm x 17cm x 29cm) equipped with a mesh window and kept in 130 

a controlled environment of 22 ± 2 °C under fluorescent lighting (Osram Gro-Lux 58W, 3700 131 

lumens, 1.5m) and a 12:12 day: night cycle. Each box was half-filled with spring water and 132 

contained 25 E. densa apical stems, 15cm to 20cm in length, and a floating petri-dish with a 133 

yeast hydrolysate/sugar mixture (4 g BactoTM TC yeastolate/7 g sugar/10 ml H2O) 134 

(Buckingham and Okrah 1993). Immatures were left to complete development and newly 135 

emerged adults were collected with a mouth aspirator and transferred to new boxes to allow 136 

mating, oviposition and development. Every week, one new box was set up with newly 137 

emerged adults, during which boxes were checked for inconsistencies (e.g., fungal growths) to 138 

maintain a disease-free insect culture. Water and new plant material were added as needed. All 139 

tests conducted with H. egeriae were conducted in the Centre for Biological Control (CBC) 140 

quarantine facility and used individuals from this fly culture. 141 

Host specificity  142 

Test plants 143 

Non-target plants for host-specificity testing were selected using the centrifugal phylogenetic 144 

method (Wapshere 1974) with modifications by Briese (2003). Phylogenetic trees of the order 145 

Alismatales (Petersen et al. 2015) and the family Hydrocharitaceae (Chen et al. 2012) were 146 

used to identify families and genera that are related to the target plant. Species of these families 147 

and genera that are present in South Africa were selected for testing (Table 1). One species, 148 

Myriophyllum spicatum L. (Haloragaceae), was selected on the basis of ecological similarity.  149 
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Prior to experimental set up, individual test plants were planted in 3cm x 5cm vials, containing 150 

sediment and a slow release fertilizer, MulticoteTM (Haifa) to a ratio of 0.7g per 1kg sediment. 151 

Plants were grown in 600l tanks that are connected to a flow-system in a polytunnel at the 152 

Waainek CBC Facility, Grahamstown. A fluid nutrient stock solution was added to the tanks 153 

to ensure healthy plant growth (Smart and Barko 1985). Rooted plants were used for host-154 

specificity testing, and if not available, healthy leaves or plant fragments were used.  155 

Three test species from the Hydrochariataceae, Lagarosiphon ilicifolius Obermeyer, 156 

Lagarosiphon verticillifolius Obermeyer and Ottelia exserta Ridley, could not be collected, 157 

despite extensive efforts. Lagarosiphon ilicifolius is from southern Africa (Mozambique, 158 

Namibia and Botswana) and exportation of these species into South Africa was problematic. 159 

Lagarosiphon verticillifolius and O. exserta could not be collected due to an extensive drought 160 

in 2015 to 2016 that resulted in low water levels in the restricted rivers and dams where they 161 

occur. These species are also geographically isolated and rarely found. Nonetheless, test 162 

species within the Hydrocharitaceae were well represented, including species from four genera 163 

that are more commonly found in South Africa.  164 

Hydrellia egeriae individuals for testing 165 

A combination of first instars (< 24hrs old) and eggs were used for host-specificity tests. To 166 

obtain individuals, ten pairs of newly emerged adults were placed in a transparent box (41cm 167 

X 17cm X 29cm), half-filled with 10l spring water, 25 E. densa apical shoot tips and a yeast 168 

hydrolysate/sugar mixture (4 g BactoTM TC yeastolate/7 g sugar/10 ml H2O) provided on a 169 

floating feeding station. Adults were allowed to mate and oviposit and leaves with eggs were 170 

harvested and placed in a petri-dish containing spring water. Five neonate larvae/eggs were 171 

transferred to test plants by excising the leaf material around it, and pinning the excised leaf 172 

with the larva/egg, onto the test plant. Eggs were checked for larval emergence after initiation 173 

of the replicate.  174 
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No-choice larval feeding  175 

Test plants were individually placed in 600ml containers (24cm x 7.5cm) filled with spring 176 

water. An excised E. densa leaf containing first instar/eggs was pinned to leaves on the test 177 

plants with minuten pins. Containers were enclosed with netting, held in place by an elastic 178 

band to prevent any H. egeriae adults from escaping. One replicate consisted of sufficient test 179 

plant material for feeding and development and five H. egeriae larvae/eggs. After 30 days, 180 

replicates were checked for larval mining and pupariation. Larval mining was determined by 181 

stereo microscope observation and recorded. The leaf area mined (¼, ½, ¾ or 1) as well as the 182 

total number of leaves for the test species were recorded in order to calculate the percentage of 183 

the test plant damaged.  Survival was measured as the number of H. egeriae individuals that 184 

pupated on the test plant. 185 

Paired choice larval feeding  186 

Egeria densa and a test species were placed together in a 1.5l container with spring water. 187 

Stems of the tests species were intertwined with each other. Excised E. densa leaves with first 188 

instars/eggs, were attached to a 1cm x 1cm piece of condensed sponge with a minuten pin and 189 

placed in the middle of the container to drift in the water over the test species. The sponge 190 

allowed for buoyancy while the instars/eggs were suspended just below the water surface, 191 

allowing them to choose their feeding site. The number of damaged leaves was recorded as 192 

well as the number puparia for each test plant. 193 

Continuation test 194 

Test species that supported agent development during paired choice tests were subjected to 195 

continuation tests. Thirty apical shoots of the test species were placed in a transparent culture 196 

container (41cm X 17cm X 29cm) filled with spring water. To initiate the test, a total of 100 197 

H. egeriae first instars/eggs on excised E. densa leaves were pinned to shoots of the test species 198 



10 
 

and left to feed and develop. After 30 days, the container of each test species was checked for 199 

adult emergence every second day, during which the adults were removed with a mouth 200 

aspirator and placed into a new culture container containing the test species from which they 201 

emerged. Food (4 g BactoTM TC yeastolate/7 g sugar/10 ml H2O) for adults was provided on a 202 

petri-dish. The continuation test for the target weed was conducted until F3, and for non-target 203 

species, until the population died out.  204 

Risk assessment 205 

Potential non-target effects (i.e., feeding and reproductive risk) posed by releasing H. egeriae 206 

were calculated using the agent’s feeding and survival result for each non-target species relative 207 

to the target weed, E. densa (Wan and Harris 1997). The following criteria were used: plant 208 

preference, plant acceptability, larval survival and number of F1 adults. The feeding risk for 209 

each non-target species was calculated as the product of the plant preference (i.e., mean 210 

percentage feeding on a non-target species relative to its host plant during choice tests) and 211 

plant acceptability (i.e., mean number of mined leaves during no-choice tests relative to its host 212 

plant). Similarly, the reproductive risk was calculated by multiplying the relative survival of 213 

H. egeriae on non-target species during no-choice tests to its host plant and the mean number 214 

of F1 adults that emerged from non-target species during continuation tests. Zero values were 215 

replaced with 0.001 to facilitate calculation of risk scores. Standard errors (±SE) for preference 216 

and performance scores were calculated using √
𝑝(1−𝑝)

𝑛
 , where p represents the risk score and 217 

n the total number of H. egeriae individuals used for the respective test plant during each host-218 

specificity test.  219 

Statistical Analysis 220 

All statistical analyses were conducted in the R environment version 3.2.3 (R Core Team 2014). 221 

The distribution of larval damage and survival for no-choice and choice feeding tests was tested 222 
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for normality using the Shapiro Wilk test. Due to the uneven distribution of all the dependent 223 

variables, a non-parametric Kruskal Wallis test was used to determine statistical difference 224 

between test plants for larval feeding and survival during no-choice tests. The post hoc Kruskal-225 

Dunn test was used to identify significant differences (P < 0.05) between test plants during no-226 

choice tests. A Wilcoxon rank sum test was used to determine statistical differences between 227 

plants during paired choice tests. 228 

RESULTS 229 

No-choice larval feeding  230 

In total, 19 plant species in six families were tested. Hydrellia egeriae expressed significant 231 

preference for its host plant, E. densa. Larvae produced over three times more damage to E. 232 

densa leaves than any of the non-target species (Kruskal Wallis test, 𝜒2 = 59.98; df = 5; P < 233 

0.001) (Table 2). During the no-choice tests, H. egeriae mined only closely related species 234 

within the Hydrocharitaceae. These included L. major, L. muscoides, L. cordofanus, H. 235 

verticillata and V. spiralis. Egeria densa supported over five times more H. egeriae survival 236 

to adulthood compared to non-target species (Kruskal Wallis test, 𝜒2 = 71.82; df = 5; P < 237 

0.001) with a percentage of 82.22 ± 4.04 % (Table 2). Non-target species that supported 238 

larval development were L. major, L. muscoides and V. spiralis with survival percentages of 239 

12.00 ± 4.42%, 6.67 ± 5.12% and 3.53 ± 0.16%, respectively. Only species that supported 240 

agent survival during no-choice tests were subjected to choice larval feeding tests. 241 

Furthermore, 13 of the 19 non-target species tested under no-choice conditions incurred no 242 

larval mining and supported no agent development. Two of these species, Najas horrida and 243 

N. marina, are within the Hydrocharitaceae, the remainder belong to less closely related 244 

families that include the Potamogetonaceae, Alismataceae, Araceae, Aponogetonaceae and 245 

Haloragaceae (Table 1). 246 
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Paired choice larval feeding 247 

During paired choice tests, Hydrellia egeriae preferred E. densa for feeding eight times more 248 

than the non-target species L. major (Wilcoxon rank sum test, W = 174; P < 0.001), L. 249 

muscoides (Wilcoxon rank sum test, W = 35; P = 0.002) and V. spiralis (Wilcoxon rank sum 250 

test, W = 16; P = 0.02) (Table 3). Larval survival followed the same trend with L. major 251 

(Wilcoxon rank sum test, W = 422.5; P < 0.001), L. muscoides (Wilcoxon rank sum test, W = 252 

49; P < 0.001) and V. spiralis (Wilcoxon rank sum test, W = 25; P = 0.007) as significant 253 

inferior options for pupation. The percentage of H. egeriae that pupated in E. densa was over 254 

13 times more than the non-target species L. major. Additionally, H. egeriae did not pupate in 255 

L. muscoides or V. spiralis.  256 

Continuation test  257 

The only test plant that could sustain a growing agent population was E. densa (Table 4). The 258 

mean number of H. egeriae instars that survived to F1 was 75.5± 4.5, which produced an F2 259 

population of 217.5 ± 25.5 individuals. Lagarosiphon major was the only test plant that 260 

supported a viable population during the founder population, with 6.75 ± 3.9 adults developing 261 

unto adulthood. However, population growth was negative with no viable adults produced in 262 

the first generation.  263 

Risk assessment 264 

Despite some feeding and development on non-target species during no-choice, choice and 265 

continuation tests, risk assessment scores illustrated that the non-target risk posed by H. egeriae 266 

is very low. Relative to the target species, the feeding and reproductive risk of non-target 267 

species, L. major, is ten time less compared to E. densa. Additionally, feeding and reproductive 268 

risk scores for L. muscoides and V. spiralis did not exceed 0.03% 269 

 270 
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DISCUSSION 271 

Results from this quarantine-based study supports results from native range specificity testing, 272 

where H. egeriae expressed a clear preference for, and higher performance on its host plant 273 

during no-choice, choice and open field tests (Cabrera Walsh et al. 2013). Out of 19 non-target 274 

plant species tested, H. egeriae only mined five non-target species, all within the 275 

Hydrocharitaceae, and completed development on three of these non-target species. Under field 276 

conditions, starved larvae isolated from their host plant may cause temporary damage to L. 277 

major, L. muscoides, L. cordofanus, H. verticillata and V. spiralis. This may occur if H. egeriae 278 

disperses to new areas where the target weed is not available or where agent damage drastically 279 

reduced E. densa populations. As illustrated by the continuation tests, only one non-target 280 

species, L. major will be able to support a viable agent population. In a review on the efficiency 281 

of using relative performance scores to predict non-target effects, Paynter et al. (2015) found 282 

that non-target effects (e.g., spill-over, full utilization) were evident for risk scores above 0.20 283 

(20%). Based on the risk assessment, L. major is the only non-target species that H. egeriae 284 

poses a major feeding and reproductive risk to with scores below 1.34%. In the field, Hydrellia 285 

egeriae would also have to compete with native Hydrellia species that feed on native 286 

Lagarosiphon species, for example, Hydrellia lagarosiphon Deeming (Diptera: Ephydridae), 287 

a widely distributed, host-specific, herbivore of L. major (Martin et al. 2013). Hybridization of 288 

biocontrol agents with related species has been recorded in four cases (Havill et al. 2012), and 289 

is an undesirable non-target effect. Yet, an extensive systematic and ecological study of the 290 

genus Hydrellia, Deonier (1971) never encountered interbreeding of Hydrellia species, in 291 

either laboratory, or natural conditions. This suggests that hybridization of H. egeriae and H. 292 

lagarosiphon or any native Hydrellia species in the field is highly unlikely.  293 

Specialist herbivores often use closely related species due to similar morphological and 294 

chemical traits (Futuyma and Agrawal 2009). A phylogenetic tree of the Hydrocharitaceae 295 
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based on two plastid genes (rbcL and matK) and five mitochondrial genes (atp1, ccmB, cob, 296 

mttB and nad5) (Chen et al. 2012), indicates that the genera Lagarosiphon and Egeria are 297 

within the same clade, whereas Hydrilla and Vallisneria are located within a sister clade. The 298 

genus Lagarosiphon is from the Afrotropics; species within the genus are morphologically 299 

similar to E. densa (Chen et al. 2012). The phylogenetic relatedness of the genus to E. densa 300 

predicted H. egeriae mining and development on L. major and L. muscoides during no-choice 301 

testing. Feeding and development on the further related V. spiralis support the hypothesis that 302 

no-choice tests can produce false-positives due to small cage sizes and interference with natural 303 

host finding behaviour (van Driesche and Murray 2004; Sheppard et al. 2005). In its native 304 

range, open field choice tests indicated that H. egeriae only colonized E. densa, and no leaf-305 

mining or adults were recorded in V. spiralis (Cabrera Walsh et al. 2013).  306 

Although the test plant list from this study is not phylogenetically complex, risk assessment 307 

scores have proven valuable in such cases. For example, biocontrol agents for the invasive 308 

weeds Solanum mauritianum Scopoli (Solanaceae) and Tithonia diversifolia (Hemsl.) A. Gray 309 

(Asteraceae) showed considerable preference and performance on non-target species during 310 

host-specificity testing, but had inferior feeding and reproductive risk scores compared to the 311 

target weed (Olckers 2000; Mphephu et al. 2017). 312 

Concerted efforts should be made to fine tune testing methodology using the latest information 313 

and concepts, and drawing on past experiences to avoid repeating failures. No-choice and 314 

choice tests will continue to be the mainstay of laboratory host-specificity testing, have been 315 

used to adequately predict agent safety (Paynter et al. 2015) and further utilized in risk 316 

assessments (Olckers 2000; Mphephu et al. 2017). Although less frequently used, continuation 317 

tests add strength to host-specificity test results (Buckingham and Okrah 1993; Coetzee et al. 318 

2003; Tipping et al. 2018), and as shown here, can be used in risk assessment to predict the 319 
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reproductive risk of a biocontrol agent. Based on the findings from this study, permission for 320 

the release of H. egeriae in South Africa has been obtained.  321 

 322 
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Table 1: Non-target species selected for host-specificity testing of Hydrellia egeriae with 431 

degrees of phylogenetic separation (Briese 2005) within the Alismatales. Test species were 432 

selected on the basis of phylogenetic relatedness (Briese 2003). Asterisks (*) indicate exotic 433 

plant species. Test species ordered according to increasing degrees of phylogenetic separation 434 

and listed alphabetically within each degree of phylogenetic separation.  435 

Family Test plant 

Degrees of 

phylogenetic 

separation 

Hydrocharitaceae 

 

Hydrilla verticillata Royle * 
2 

Najas horrida A. Brown ex 

Magnus 
2 

Najas marina L. 2 

Vallisneria spiralis L. 2 

Lagarosiphon cordofanus 

Caspary 
3 

Lagarosiphon ilicifolius 

Obermeyer 
3 

Lagarosiphon major Ridley 
3 

Lagarosiphon muscoides Harvey 
3 

Lagarosiphon verticillifolius 

Obermeyer 
3 

Ottelia exserta Ridley 
3 

Aponogetonaceae Aponogeton distachyos L. filius 7 

Potamogetonaceae 
Potamogeton crispus L. 7 

Potamogeton pussilus L. 
7 
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Potamogeton schweinfurthii A. 

Bennett 
7 

Potamogeton thunbergii 

Chamisso and Schlechtendal 
7 

Stuckenia pectinata L 
7 

Alismataceae 

Alisma plantago-aquatica L. 
8 

Echinodorus cordifolius (L.) 

Griseb 
8 

Sagittaria platyphylla 

(Engelmann.) J.G.Smith* 
8 

Araceae Lemna sp. 
10 

Haloragaceae Myriophyllum spicatum L.* 
Different order 

436 
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Table 2: Test species that incurred Hydrellia egeriae damage (±SE %) and that supported 437 

agent development (±SE %) during no-choice feeding tests. Test species listed alphabetically. 438 

Test plant n % Feedinga 

Relative 

damageb 

% Survivalc 

Relative 

survivald 

Hydrocharitaceae 

Egeria densa 135 25.19 ± 1.60a 1.00 82.22 ± 4.04a 1.00 

Hydrilla verticillata 55 0.83 ± 0.17b 0.03 0 - 

Lagarosiphon 

cordofanus 
60 0.23 ± 0.17b 0.01 0 - 

Lagarosiphon major 50 4.76 ± 1.56b 0.19 12.00 ± 4.42b 0.14 

Lagarosiphon 

muscoides 
60 2.32 ± 0.66b 0.09 6.67 ± 5.12b 0.08 

Vallisneria spiralis 85 7.69 ± 2.61b 0.31 3.53 ± 1.91b 0.04 

a Number of mined leaves/total number of leaves x 100 439 

b Relative damage determined using the mean percentage of damaged leaves per test species in proportion to that 440 

on the target weed. 441 

c Number of puparia/5 x 100 442 

d Relative survival determined using the mean survival on the test species in proportion to that on the target weed. 443 

Means (±SE) within columns followed by the same letter are not statistically different (P < 0.05, post hoc pair-444 

wise comparisons). 445 
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Table 3: Number of mined leaves (±SE) and percentage survival (±SE %) of 1st instars during 447 

paired-choice tests. Test species listed alphabetically. 448 

Test plant n 

Number of mined leaves Percentage (%) Survivala Relative 

survivalb E. densa Non-target E. densa Non-target 

Lagarosiphon 

major 

105 58.92 ± 10.27a 7.25 ± 3.13b 61.90 .± 7.16a 4.55 ± 2.67b 0.07 

Lagarosiphon 

muscoides 

35 82.80 ± 5.44a 1.80 ± 0.37b 68.57 ± 5.95a 0.00 ± 0.00b 0.00 

Vallisneria 

spiralis 

25 56.25 ± 3.77a 2.50 ± 0.96b 71.33 ± 8.67a 0.00 ± 0.00b 0.00 

a Number of puparia/5 x 100 449 

b Relative survival determined using the mean survival on the test species in proportion to that on the target weed. 450 

Means (±SE) within columns followed by the same letter are not significantly different (P < 0.05, Wilcoxon rank 451 

sum test). 452 
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Table 4: The mean number (±SE) and range of Hydrellia egeriae adults reared on test species 454 

during multi-generation continuation tests. Test species listed alphabetically. 455 

Test Plant n F1 Range F2 Range 

Egeria densa 2 75.5 ± 4.5 71 - 80 217.5 ± 25.5 192 – 243 

Lagarosiphon major 4 6.75 ± 3.9 0 - 18 0.75 ± 0.48 0 – 2 

Lagarosiphon 

muscoides 

1 0 

0 

0 

0 

Vallisneria spiralis 2 0 0 0 0 

n: one replicate consisted of 100 individuals (eggs or 1st instars) 456 
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Table 5: Risk assessment of non-target attack by Hydrellia egeriae, using its relative preference 458 

(±SE) for and relative performance (±SE) on test species during no-choice, choice and 459 

continuation tests. Test species listed alphabetically. 460 

Test species 

Plant 

preferencea 

Plant 

acceptabilityb 

Feeding 

risk(%)c 

Larval 

survivald 

Number of  

F1 adultse 

Reproductive 

risk (%)f 

Egeria densa 1.00 1.00 100 1.00 1.00 100 

Lagarosiphon 

major 

0.07 ± 0.02 0.19 ± 0.06 1.33 0.14 ± 0.05 0.09 ± 0.02 1.26 

Lagarosiphon 

muscoides 

0.00 ± 0.00 0.09 ± 0.04 0.01 0.08 ± 0.04 0.00 ± 0.00 0.01 

Vallisneria 

spiralis 

0.00 ± 0.00 0.31 ± 0.05 0.03 0.04 ± 0.02 0.00 ± 0.00 0.00 

a Agent feeding on test species relative to target plant during choice tests (Table 3).  461 

b Agent feeding on test species relative to its target plant during no-choice tests (Table 2).  462 

c Product of suitability indices for preferencea and performanceb. 463 

d Survival of agent on test species relative to its host plant during no-choice tests (Table 2). 464 

e Number of adults (F1) that emerged from non-target species relative to the target weed from multi-generation 465 

tests (Table 4).  466 

f Product of suitability indices for larval survivald and generational turnover 467 


