63 research outputs found

    Large herbivores may alter vegetation structure of semi-arid savannas through soil nutrient mediation

    Get PDF
    In savannas, the tree–grass balance is governed by water, nutrients, fire and herbivory, and their interactions. We studied the hypothesis that herbivores indirectly affect vegetation structure by changing the availability of soil nutrients, which, in turn, alters the competition between trees and grasses. Nine abandoned livestock holding-pen areas (kraals), enriched by dung and urine, were contrasted with nearby control sites in a semi-arid savanna. About 40 years after abandonment, kraal sites still showed high soil concentrations of inorganic N, extractable P, K, Ca and Mg compared to controls. Kraals also had a high plant production potential and offered high quality forage. The intense grazing and high herbivore dung and urine deposition rates in kraals fit the accelerated nutrient cycling model described for fertile systems elsewhere. Data of a concurrent experiment also showed that bush-cleared patches resulted in an increase in impala dung deposition, probably because impala preferred open sites to avoid predation. Kraal sites had very low tree densities compared to control sites, thus the high impala dung deposition rates here may be in part driven by the open structure of kraal sites, which may explain the persistence of nutrients in kraals. Experiments indicated that tree seedlings were increasingly constrained when competing with grasses under fertile conditions, which might explain the low tree recruitment observed in kraals. In conclusion, large herbivores may indirectly keep existing nutrient hotspots such as abandoned kraals structurally open by maintaining a high local soil fertility, which, in turn, constrains woody recruitment in a negative feedback loop. The maintenance of nutrient hotspots such as abandoned kraals by herbivores contributes to the structural heterogeneity of nutrient-poor savanna vegetation

    Modeling of Human Prokineticin Receptors: Interactions with Novel Small-Molecule Binders and Potential Off-Target Drugs

    Get PDF
    The Prokineticin receptor (PKR) 1 and 2 subtypes are novel members of family A GPCRs, which exhibit an unusually high degree of sequence similarity. Prokineticins (PKs), their cognate ligands, are small secreted proteins of ∼80 amino acids; however, non-peptidic low-molecular weight antagonists have also been identified. PKs and their receptors play important roles under various physiological conditions such as maintaining circadian rhythm and pain perception, as well as regulating angiogenesis and modulating immunity. Identifying binding sites for known antagonists and for additional potential binders will facilitate studying and regulating these novel receptors. Blocking PKRs may serve as a therapeutic tool for various diseases, including acute pain, inflammation and cancer.Ligand-based pharmacophore models were derived from known antagonists, and virtual screening performed on the DrugBank dataset identified potential human PKR (hPKR) ligands with novel scaffolds. Interestingly, these included several HIV protease inhibitors for which endothelial cell dysfunction is a documented side effect. Our results suggest that the side effects might be due to inhibition of the PKR signaling pathway. Docking of known binders to a 3D homology model of hPKR1 is in agreement with the well-established canonical TM-bundle binding site of family A GPCRs. Furthermore, the docking results highlight residues that may form specific contacts with the ligands. These contacts provide structural explanation for the importance of several chemical features that were obtained from the structure-activity analysis of known binders. With the exception of a single loop residue that might be perused in the future for obtaining subtype-specific regulation, the results suggest an identical TM-bundle binding site for hPKR1 and hPKR2. In addition, analysis of the intracellular regions highlights variable regions that may provide subtype specificity

    Nitrogen and Carbon Isotopic Dynamics of Subarctic Soils and Plants in Southern Yukon Territory and its Implications for Paleoecological and Paleodietary Studies

    Get PDF
    We examine here the carbon and nitrogen isotopic compositions of bulk soils (8 topsoil and 7 subsoils, including two soil profiles) and five different plant parts of 79 C3 plants from two main functional groups: herbs and shrubs/subshrubs, from 18 different locations in grasslands of southern Yukon Territory, Canada (eastern shoreline of Kluane Lake and Whitehorse area). The Kluane Lake region in particular has been identified previously as an analogue for Late Pleistocene eastern Beringia. All topsoils have higher average total nitrogen δ15N and organic carbon δ13C than plants from the same sites with a positive shift occurring with depth in two soil profiles analyzed. All plants analyzed have an average whole plant δ13C of −27.5 ± 1.2 ‰ and foliar δ13C of ±28.0 ± 1.3 ‰, and average whole plant δ15N of −0.3 ± 2.2 ‰ and foliar δ15N of ±0.6 ± 2.7 ‰. Plants analyzed here showed relatively smaller variability in δ13C than δ15N. Their average δ13C after suitable corrections for the Suess effect should be suitable as baseline for interpreting diets of Late Pleistocene herbivores that lived in eastern Beringia. Water availability, nitrogen availability, spacial differences and intra-plant variability are important controls on δ15N of herbaceous plants in the study area. The wider range of δ15N, the more numerous factors that affect nitrogen isotopic composition and their likely differences in the past, however, limit use of the modern N isotopic baseline for vegetation in paleodietary models for such ecosystems. That said, the positive correlation between foliar δ15N and N content shown for the modern plants could support use of plant δ15N as an index for plant N content and therefore forage quality. The modern N isotopic baseline cannot be applied directly to the past, but it is prerequisite to future efforts to detect shifts in N cycling and forage quality since the Late Pleistocene through comparison with fossil plants from the same region

    Surface and bulk characterization of an ultrafine South African coal fly ash with reference to polymer applications

    Get PDF
    South African coal-fired power stations produce about 25 million tons of fly ash per annum, of which only approximately 5% is currently reused. A growing concern about pollution and increasing landfill costs stimulates research into new ways to utilize coal fly ash for economically beneficial applications. Fly ash particles may be used as inorganic filler in polymers, an application which generally requires the modification of their surface properties. In order to design experiments that will result in controlled changes in surface chemistry and morphology, a detailed knowledge of the bulk chemical and mineralogical compositions of untreated fly ash particles, as well as their morphology and surface properties, is needed. In this paper, a combination of complementary bulk and surface techniques was explored to assess the physicochemical properties of a classified, ultrafine coal fly ash sample, and the findings were discussed in the context of polymer application as fillers. The sample was categorized as a Class F fly ash (XRF). Sixty-two percent of the sample was an amorphous glass phase, with mullite and quartz being the main identified crystalline phases (XRD, FTIR). Quantitative carbon and sulfur analysis reported a total bulk carbon and sulfur content of 0.37% and 0.16% respectively. The spatial distribution of the phases was determined by 2D mapping of Raman spectra, while TGA showed a very low weight loss for temperatures ranging between 25 and 1000 °C. Individual fly ash particles were characterized by a monomodal size distribution (PSD) of spherical particles with smooth surfaces (SEM, TEM, AFM), and a mean particle size of 4.6 μm (PSD). The BET active surface area of this sample was 1.52 m2/g and the chemical composition of the fly ash surface (AES, XPS) was significantly different from the bulk composition and varied considerably between spheres. Many properties of the sample (e.g. spherical morphology, small particle size, thermal stability) appeared to be suitable for its applicability as filler in polymers, although the wide variation in surface composition between individual particles may challenge the development of a suitable surface modification technique. The observation that the bulk and surface compositions of the particles were so intrinsically different, strongly suggested that surface characterization is important when considering compatibility between matrices when applying fly ash as filler in polymers

    User Response to Mandatory IT Use: A Coping Theory Perspective

    Get PDF
    The introduction of a new information technology (IT) into a workplace often engenders a wide range of responses among users. These responses encompass a variety of emotions, such as excitement, indifference, skepticism, and fear, and behaviors, such as user engagement, avoidance, and workarounds, that are often manifested concurrently in the same work environment. We present a taxonomy of these responses in the context of mandated IT use by classifying user responses as engaged, compliant, reluctant, or deviant. Using a coping theoretic lens, we offer seven propositions to describe the causal factors and processes that drive specific IT user responses and how such responses might change over time. A qualitative analysis of 47 interviews of 42 physicians at a large community hospital over an 8-year period provides support for our taxonomy and propositions. The study’s key contributions are that it conceptualizes different types of user responses that may emerge in mandatory IT use settings, elaborates the key drivers of and processes underlying these diverse responses, and suggests how those behaviors may change over time with changes in the coping process
    corecore