58 research outputs found

    Engineering of T cell receptor genes to advance T cell therapy: studies into TCR pairing, signaling and binding strength

    Get PDF
    The incidence of cutaneous melanoma has increased dramatically over the past 40 years. The yearly increase in incidence rates in the Netherlands is on average 4.1%. Although the 10-year survival rates improved over the last fifteen years, the yearly mortality rates are further increasing with 2.3%, mainly in elderly patients. In case cutaneous melanoma metastasizes, the 10-year survival rate drops dramatically to less than 10%. Table 1.1 lists the U.S. Food and Drug Administration (FDA)-approved treatments for melanoma. The current standard cares of treatment for melanoma are either administration of the alkylating agent Dacarbazine, which induces DNA damage, or administration of high-dose IL-2, which serves as a T cell growth factor. However, both treatments demonstrate fairly low response rates and significant adverse effects. More recent FDA-approved treatments for melanoma include: Ipilimumab, an antibody that blocks the T cell inhibitory molecule CTLA-4 to lower the threshold of T cell activation; Vemurafenib, a drug that inhibits the serine-threonine protein kinase B-RAF (BRAF), a kinase that is constitutively active in 36 to 54% of melanoma patients due to a V600E mutation; and pegylated interferon α2b, used as an adjuvant that demonstrates anti-proliferative effects on melanoma cells and modulates immune responses

    T cell receptor fused to CD3ζ: Transmembrane domain of CD3ζ prevents TCR mis-pairing, whereas complete CD3ζ directs functional TCR expression

    Get PDF
    TCR gene therapy represents a feasible and promising treatment for patients with cancer and virus infections. Currently, this treatment rationale is hampered by diluted surface expression of the TCR transgene and generation of potentially self reactive T-cells, both a direct consequence of mis-pairing with endogenous TCR chains. As we reported previously (Gene Ther 16:1369, 2000; J Immunol 180:7736, 2008), TCR mis-pairing can be successfully addressed by a TCR:CD3ζ fusion protein (i.e., TCR:ζ). Here, we set out to minimize the content of CD3ζ in TCR:ζ, specific for MAGEA1/ HLA-A1, without compromising TCR pairing and function. Domain-exchange and 3D-modeling strategies defined a set of minimal TCR:ζ variants, which, together with a murinized and cysteine-modified TCR (TCR:mu+cys), were tested for functional TCR expression and TCR pairing. Our data with Jurkat T cells show that the CD3ζ transmembrane domain is important for cell-surface expression, whereas the CD3ζ intracellular domain is crucial for T-cell activation. Notably, inability of TCR:ζ to mis-pair was not observed for TCR:mu+cys, which depended exclusivel

    Consumption of β-glucans to spice up T cell treatment of tumors: a review

    Get PDF
    Introduction: Adoptive T-cell treatments of solid cancers have evolved into a robust therapy with objective response rates surpassing those of standardized treatments. Unfortunately, only a limited fraction of patients shows durable responses, which is considered to be due to a T cell-suppressive tumor microenvironment (TME). Here we argue that naturally

    Effects of Digested Onion Extracts on Intestinal Gene Expression: An Interspecies Comparison Using Different Intestine Models.

    Get PDF
    Human intestinal tissue samples are barely accessible to study potential health benefits of nutritional compounds. Numbers of animals used in animal trials, however, need to be minimalized. Therefore, we explored the applicability of in vitro (human Caco-2 cells) and ex vivo intestine models (rat precision cut intestine slices and the pig in-situ small intestinal segment perfusion (SISP) technique) to study the effect of food compounds. In vitro digested yellow (YOd) and white onion extracts (WOd) were used as model food compounds and transcriptomics was applied to obtain more insight into which extent mode of actions depend on the model. The three intestine models shared 9,140 genes which were used to compare the responses to digested onions between the models. Unsupervised clustering analysis showed that genes up- or down-regulated by WOd in human Caco-2 cells and rat intestine slices were similarly regulated by YOd, indicating comparable modes of action for the two onion species. Highly variable responses to onion were found in the pig SISP model. By focussing only on genes with significant differential expression, in combination with a fold change > 1.5, 15 genes showed similar onion-induced expression in human Caco-2 cells and rat intestine slices and 2 overlapping genes were found between the human Caco-2 and pig SISP model. Pathway analyses revealed that mainly processes related to oxidative stress, and especially the Keap1-Nrf2 pathway, were affected by onions in all three models. Our data fit with previous in vivo studies showing that the beneficial effects of onions are mostly linked to their antioxidant properties. Taken together, our data indicate that each of the in vitro and ex vivo intestine models used in this study, taking into account their limitations, can be used to determine modes of action of nutritional compounds and can thereby reduce the number of animals used in conventional nutritional intervention studies

    Lipopolysaccharide quantification and alkali-based inactivation in polysaccharide preparations to enable in vitro immune modulatory studies

    Get PDF
    -The correct identification of immune-modulatory activity of polysaccharides is often hampered by immune-stimulatory contaminants, with pyrogens such as lipopolysaccharide (LPS) as a very potent example. In order to avoid false positive immuno-stimulatory properties to be attributed to polysaccharides, accurate quantification and inactivation of LPS in test samples is crucial. To quantify LPS in polysaccharide preparations of different origin and structure we used two different limulus amoebocyte lysate test kits in two different laboratories. We observed larger variation in detection of LPS contamination between kits than between labs. LPS quantification proved unreliable for some polysaccharide preparations as spike controls resulted in spike recoveries outside the acceptable range. We designed a cellular in vitro assay as alternative method to detect the presence of functional LPS. This HEK-Blue hTLR4 cell culture provides a reliable assay, when combined with a cell viability test, for determining functional LPS in polysaccharide preparations. Finally, to inactivate LPS in polysaccharide preparations, we setup an alkaline-ethanol-based treatment. With this assay we observed that our treatment (5 h incubation in 0.1 M NaOH) at 56 °C efficiently inactivated LPS in all polysaccharide preparations below immune-stimulatory levels. At this elevated temperature, however, we also observed minimal to severe degradation of polysaccharide preparations as determined with SEC-RI. Taken together, we describe methods and precautions to reliably detect and inactivate LPS in polysaccharide preparations to allow reliable in vitro investigations towards immune-modulatory potential of polysaccharide preparations

    Macrophages treated with non-digestible polysaccharides reveal a transcriptionally unique phenotype

    No full text
    Dietary non-digestible polysaccharides (NDPs) might promote intestinal health via immuno-modulation. Immunomodulatory effects of NDP are most likely brought about by antigen processing cells such as macrophages that populate the intestine, although the mechanisms are still poorly understood. We validated the in vitro model of M1 and M2 macrophages to mimic the intestinal inflammatory and tolerant macrophages using literature and microarray-derived gene markers. All these markers were used to characterise the macrophage phenotype following NDP stimulation. This identified an alternative subset, termed M(NDP), which commonly modulated a set of 126 genes, involved in migration, metabolic processes, cell cycle, and inflammatory immune function. This gene-based analysis for macrophage subsets provides an additional tool to characterise NDP bioactivity for their in vivo potential.</p

    T cell receptor gene therapy: strategies for optimizing transgenic TCR pairing

    No full text
    T cell receptor (TCR) gene therapy provides patients with autologous T cells that are genetically engineered with TCR alpha beta chains and constitutes a promising approach for the treatment of tumors and virus infections. Among the current challenges of TCR gene therapy is the optimization of TCR alpha and beta transgene pairing to enhance the functional avidity of therapeutic T cells. Recently, various genetically modified TCRs have been developed that enhance TCR pairing and minimize mispairing, i.e. pairing between transgenic and endogenous TCR chains. Here, we classify such receptors according to their CD3-dependence for surface expression and review their abilities to address functional T cell avidity. In addition, we discuss the anticipated clinical value of these and other strategies to generate high-avidity T cells

    Heat treatment of β-lactoglobulin affects its digestion and translocation in the upper digestive tract

    No full text
    Heat treatment is a commonly applied unit operation in the processing of β-lactoglobulin containing products. This does, however, influence its structure and thereby impacts its activity and digestibility. We describe how various heat-treatments of β-lactoglobulin change the digestibility using a modified version of the current consensus INFOGEST protocol. Additionally, protein was investigated for its translocation over the intestinal epithelial barrier, which would bring them in contact with immune cells. The extent of gastric digestibility was higher when the protein structure was more modified, while the influence of glycation with lactose was limited. Translocation studies of protein across Caco-2 cell monolayers showed a lower translocation rate of protein heated in solution compared to the others. Our study indicates that structural modifications after different heat-treatments of β-lactoglobulin increase in particular gastric digestibility and the translocation efficiency across intestinal epithelial cells.</p

    T cell receptor (TCR) gene therapy to treat melanoma: lessons from clinical and preclinical studies

    No full text
    Importance of the field: Adoptive T cell therapy (ACT) with tumour infiltrating lymphocytes is currently the best treatment option for metastatic melanoma. Despite its clinical successes, ACT has limitations in availability and generation of therapeutic T cells for a larger group of patients. Introduction of tumour-specific T cell receptors into T cells, termed TCR gene therapy, can provide an alternative for ACT that is more widely applicable and might be extended to other types of cancer. Areas covered in this review: The current status of TCR gene therapy studies including clinical challenges, such as on-target toxicity, compromised antitumour T cell responses, compromised T cell persistence and potential immunogenicity of receptor transgenes. Strategies to address these challenges are covered. What the reader will gain: A listing and discussion of strategies that aim at improving the efficacy and safety of TCR gene therapy. Such strategies address antigen choice, TCR mis-pairing, functional avidity and persistence of T cells, immune responses towards receptor transgenes, and combination of ACT with other therapies. Take home message: To ensure further clinical development of TCR gene therapy, it is necessary to choose safe T cell target antigens, and implement (combinations of) strategies that enhance the correct pairing of TCR transgenes and the functional avidity and persistence of T cells

    In Vitro Studies Toward the Use of Chitin as Nutraceutical : Impact on the Intestinal Epithelium, Macrophages, and Microbiota

    No full text
    Scope: Chitin, the most abundant polysaccharide found in nature after cellulose, is known for its ability to support wound healing and to lower plasma-oxidized low-density lipoprotein (LDL) levels. Studies have also revealed immunomodulatory potential but contradicting results are often impossible to coalesce through usage of chitin of different or unknown physicochemical consistency. In addition, only a limited set of cellular models have been used to test the bioactivity of chitin. Methods and Results: Chitin is investigated with well-defined physicochemical consistency for its immunomodulatory potency using THP-1 macrophages, impact on intestinal epithelial barrier using Caco-2 cells, and fermentation by fecal-derived microbiota. Results show that chitin with a degree of acetylation (DA) of ≈83%, regardless of size, does not affect the intestinal epithelial barrier integrity. Large-sized chitin significantly increases acetic acid production by gut microbiota without altering the composition. Exposure of small-sized chitin to THP-1 macrophages lead to significantly increased secretion of IL-1β, IL-8, IL-10, and CXCL10 in a multi-receptor and clathrin-mediated endocytosis dependent manner. Conclusions: These findings indicate that small-sized chitin does not harm the intestinal barrier nor affects SCFA secretion and microbiota composition, but does impact immune activity which could be beneficial to subjects in need of immune support or activation.</p
    corecore