41 research outputs found
Accretion, Outflows, and Winds of Magnetized Stars
Many types of stars have strong magnetic fields that can dynamically
influence the flow of circumstellar matter. In stars with accretion disks, the
stellar magnetic field can truncate the inner disk and determine the paths that
matter can take to flow onto the star. These paths are different in stars with
different magnetospheres and periods of rotation. External field lines of the
magnetosphere may inflate and produce favorable conditions for outflows from
the disk-magnetosphere boundary. Outflows can be particularly strong in the
propeller regime, wherein a star rotates more rapidly than the inner disk.
Outflows may also form at the disk-magnetosphere boundary of slowly rotating
stars, if the magnetosphere is compressed by the accreting matter. In isolated,
strongly magnetized stars, the magnetic field can influence formation and/or
propagation of stellar wind outflows. Winds from low-mass, solar-type stars may
be either thermally or magnetically driven, while winds from massive, luminous
O and B type stars are radiatively driven. In all of these cases, the magnetic
field influences matter flow from the stars and determines many observational
properties. In this chapter we review recent studies of accretion, outflows,
and winds of magnetized stars with a focus on three main topics: (1) accretion
onto magnetized stars; (2) outflows from the disk-magnetosphere boundary; and
(3) winds from isolated massive magnetized stars. We show results obtained from
global magnetohydrodynamic simulations and, in a number of cases compare global
simulations with observations.Comment: 60 pages, 44 figure
Communication and mutual resource exchange in north Florida hermit crabs
The patterns of shell exchange in three species of hermit crabs which overlap in distribution and shell use were observed in the laboratory. Crabs showed no tendency to initiate more exchanges with conspecifics as compared with nonconspecific individuals and there were no specific size dominance effects. Lack of common communicatory patterns between Clibararius vittatus and Pagurus pollicaris was correlated with minimal actual exchange, while Pagurus impressus exchanged with both species and executed patterns in common with both. The pattern of shell exchanges and preferences indicated that, in some cases, both individuals may gain in interspecific exchanges.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46904/1/265_2004_Article_BF00569198.pd
Basic Methods for Computing Special Functions
This paper gives an overview of methods for the numerical evaluation of special functions, that is, the functions that arise in many problems from mathematical physics, engineering, probability theory, and other applied sciences. We consider in detail a selection of basic methods which are
frequently used in the numerical evaluation of special functions: converging and asymptotic series, including Chebyshev expansions, linear recurrence relations, and numerical quadrature. Several other methods are available and some of these will be discussed in less detail. We give examples of recent software for special functions where these methods are used. We mention a list of new publications on computational aspects of special functions available on our website