31 research outputs found

    Etude mathématique et numérique de modèles homogénéisés de métamatériaux

    Get PDF
    Dans la première partie des études des problèmes de propagation d'ondes en présence de métamatériaux homogénéisés tels que les équations de Maxwell, le systèmes de l'acoustique ou de l'élasticité linéaire. Nous établissons des résultats d'existence et d'unicité pour ces systèmes sous des hypothèses phénoménologiques sur le métamatériaux en accord avec certains modèles de la littérature. Nous abordons ensuite leurs approximations numériques. Nous présentons des résultats concernant les éléments finis pour l'approximation de l'équation de Helmholtz qui montrent que ce schéma peut ne pas converger en présence de métamatériaux. On propose alors un schéma Galerkin Discontinu dont on montre numériquement sa convergence sur des exemples de métamatériauxIn the first part, we investigate wave propagation problems with homogenized metamaterials for Maxwell's equations and acoustics or linear elasticity systems. We establish that each of these systems is well-posed under assumptions that are relevant for some models already designed in the literature. We next tackle their numerical approximation. We give results showing that the finite element method for the approximation of Helmholtz equation, when metatmaterials are involved, may not converges. We propose then a numerical scheme, the EF-AL schemen which can be with metamaterials and we prove that it converges as soon as the considered problem is well-posed. We finish studying the discontinuous galerkin scheme. We show numerically its convergence for some examples of metamaterials

    Approximation by multipoles of the multiple acoustic scattering by small obstacles and application to the Foldy theory of isotropic scattering.

    Get PDF
    50 (avec 1,5 interligne)International audienceThe asymptotic analysis, carried out in this paper, for the problem of a multiple scattering of a time-harmonic wave by obstacles whose size is small as compared with the wavelength establishes that the effect of the small bodies can be approximated at any order of accuracy by the field radiated by point sources. Among other issues, this asymptotic expansion of the wave furnishes a mathematical justification with optimal error estimates of Foldy's method that consists in approximating each small obstacle by a point isotropic scatterer. Finally, it is shown how this theory can be further improved by adequately locating the center of phase of the point scatterers and taking into account of self-interactions

    Optimization of Bathymetry for Long Waves with Small Amplitude

    Get PDF
    This paper deals with bathymetry-oriented optimization in the case of long waves with small amplitude. Under these two assumptions, the free-surface incompressible Navier-Stokes system can be written as a wave equation where the bathymetry appears as a parameter in the spatial operator. Looking then for time-harmonic fields and writing the bottom topography as a perturbation of a flat bottom, we end up with a heterogeneous Helmholtz equation with impedance boundary condition. In this way, we study some PDE-constrained optimization problem for a Helmholtz equation in heterogeneous media whose coefficients are only bounded with bounded variation. We provide necessary condition for a general cost function to have at least one optimal solution. We also prove the convergence of a finite element approximation of the solution to the considered Helmholtz equation as well as the convergence of discrete optimum toward the continuous ones. We end this paper with some numerical experiments to illustrate the theoretical results and show that some of their assumptions could actually be removed

    Optimisation topologique en mécanique des fluides et analyse numérique de problèmes de propagation d’ondes en régime harmonique

    No full text
    Ce manuscrit est une synthèse de mes activités de recherche réalisées depuis mon recrutement en tant que Maître de conférences.Une première partie décrit mon curriculum vitae.La seconde partie présente tout d’abord des apports réalisés en lien avec l’optimisation topologique en mécanique des fluides. Ce type de problème vise à déterminer la localisation d’un solide au sein d’un fluide permettant de minimiser une fonction coût donnée. Pour chaque problème étudié (optimisation d’une bathymétrie, optimisation des transferts de chaleur dans un fluide, prise en compte d’un écoulement retour, optimisation de poreux modélisés par la loi de Darcy), on donne essentiellement des théorèmes d’existence et d’unicité d’une solution faible à l’EDP considérée, des résultats d’existence d’au moins une solution optimale et des conditions nécessaires d’optimalité du premier ordre.On présente également des résultats de convergence de la solution du problème d’optimisation discrétisé par éléments finis vers la solution du problème d’optimisation continu ainsi que des simulations numériques permettant d’illustrer certains résultats théoriques.Des apports portant sur l’analyse numérique de problèmes de propagation d’ondes en régime harmonique sont ensuite détaillés. On présente notamment les travaux réalisés sur le préconditionneur de type « Shifted Laplace Preconditioner » utilisé pour accélérer la résolution de systèmes linéaires issus d’une discrétisation de l’équation de Helmholtz. Cette partie se termine en présentant des schémas différences finies avec correction de dispersion.La dernière partie du mémoire expose des perspectives de recherche à moyen et long terme

    The Boussinesq system with non-smooth boundary conditions : existence, relaxation and topology optimization.

    No full text
    In this paper, we tackle a topology optimization problem which consists in finding the optimal shape of a solid located inside a fluid that minimizes a given cost function. The motion of the fluid is modeled thanks to the Boussinesq system which involves the unsteady Navier-Stokes equation coupled to a heat equation. In order to cover several models presented in the literature, we choose a non-smooth formulation for the outlet boundary conditions and an optimization parameter of bounded variations. This paper aims at proving existence of solutions to the resulting equations, along with the study of a relaxation scheme of the non-smooth conditions. A second part covers the topology optimization problem itself for which we proved the existence of optimal solutions and provides the definition of first order necessary optimality conditions
    corecore