45 research outputs found
An improved Monte Carlo study of coherent scattering effects of low energy charged particle transport in Percus-Yevick liquids
We generalize a simple Monte Carlo (MC) model for dilute gases to consider
the transport behavior of positrons and electrons in Percus-Yevick model
liquids under highly non-equilibrium conditions, accounting rigorously for
coherent scattering processes. The procedure extends an existing technique
[Wojcik and Tachiya, Chem. Phys. Lett. 363, 3--4 (1992)], using the static
structure factor to account for the altered anisotropy of coherent scattering
in structured material. We identify the effects of the approximation used in
the original method, and develop a modified method that does not require that
approximation. We also present an enhanced MC technique that has been designed
to improve the accuracy and flexibility of simulations in spatially-varying
electric fields. All of the results are found to be in excellent agreement with
an independent multi-term Boltzmann equation solution, providing benchmarks for
future transport models in liquids and structured systems.Comment: 27 pages, 6 figure
Ultracold collisions in metastable helium
Photoassociation processes are studied in ultracold collisions between different isotopes of metastable
He(2^3S) and He(2^3P) atoms; Penning and associative ionization rates for collisions between two He(2^3S) atoms are also obtained. Comparisons are made with data from existing experiments
An improved set of electron-THFA cross sections refined through a neural network-based analysis of swarm data
We review experimental and theoretical cross sections for electron transport in α-tetrahydrofurfuryl alcohol (THFA) and, in doing so, propose a plausible complete set. To assess the accuracy and self-consistency of our proposed set, we use the pulsed-Townsend technique to measure drift velocities, longitudinal diffusion coefficients, and effective Townsend first ionization coefficients for electron swarms in admixtures of THFA in argon, across a range of density-reduced electric fields from 1 to 450 Td. These measurements are then compared to simulated values derived from our proposed set using a multi-term solution of Boltzmann’s equation. We observe discrepancies between the simulation and experiment, which we attempt to address by employing a neural network model that is trained to solve the inverse swarm problem of unfolding the cross sections underpinning our experimental swarm measurements. What results from our neural network-based analysis is a refined set of electron-THFA cross sections, which we confirm is of higher consistency with our swarm measurements than that which we initially proposed. We also use our database to calculate electron transport coefficients in pure THFA across a range of reduced electric fields from 0.001 to 10000 Td
Low Q^2 Jet Production at HERA and Virtual Photon Structure
The transition between photoproduction and deep-inelastic scattering is
investigated in jet production at the HERA ep collider, using data collected by
the H1 experiment. Measurements of the differential inclusive jet
cross-sections dsigep/dEt* and dsigmep/deta*, where Et* and eta* are the
transverse energy and the pseudorapidity of the jets in the virtual
photon-proton centre of mass frame, are presented for 0 < Q2 < 49 GeV2 and 0.3
< y < 0.6. The interpretation of the results in terms of the structure of the
virtual photon is discussed. The data are best described by QCD calculations
which include a partonic structure of the virtual photon that evolves with Q2.Comment: 20 pages, 5 Figure
Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA
An investigation of the hadronic final state in diffractive and
non--diffractive deep--inelastic electron--proton scattering at HERA is
presented, where diffractive data are selected experimentally by demanding a
large gap in pseudo --rapidity around the proton remnant direction. The
transverse energy flow in the hadronic final state is evaluated using a set of
estimators which quantify topological properties. Using available Monte Carlo
QCD calculations, it is demonstrated that the final state in diffractive DIS
exhibits the features expected if the interaction is interpreted as the
scattering of an electron off a current quark with associated effects of
perturbative QCD. A model in which deep--inelastic diffraction is taken to be
the exchange of a pomeron with partonic structure is found to reproduce the
measurements well. Models for deep--inelastic scattering, in which a
sizeable diffractive contribution is present because of non--perturbative
effects in the production of the hadronic final state, reproduce the general
tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil
A Search for Selectrons and Squarks at HERA
Data from electron-proton collisions at a center-of-mass energy of 300 GeV
are used for a search for selectrons and squarks within the framework of the
minimal supersymmetric model. The decays of selectrons and squarks into the
lightest supersymmetric particle lead to final states with an electron and
hadrons accompanied by large missing energy and transverse momentum. No signal
is found and new bounds on the existence of these particles are derived. At 95%
confidence level the excluded region extends to 65 GeV for selectron and squark
masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure
Theoretical studies of photoassociation in ultracold metastable helium
Line shifts and line shapes for photoassociation of spin-polarised metastable helium to long-range vibrational states in the J = 1,0+u potential dissociating to the 2s3S1 + 2p 3P0 limit are studied using a nonperturbative multichannel calculation valid for arbitrary laser intensities. Asymptotically-free dressed states of the laser plus matter system are used to obtain the S-matrix elements required to generate the photoassociation profiles. Issues associated with the very shallow nature of the potentials that support the excited states are investigated
Global stability properties of a class of renewal epidemic models.
We investigate the global dynamics of a general Kermack-McKendrick-type epidemic model formulated in terms of a system of renewal equations. Specifically, we consider a renewal model for which both the force of infection and the infected removal rates are arbitrary functions of the infection age, , and use the direct Lyapunov method to establish the global asymptotic stability of the equilibrium solutions. In particular, we show that the basic reproduction number, R0, represents a sharp threshold parameter such that for R01, the infection-free equilibrium is globally asymptotically stable; whereas the endemic equilibrium becomes globally asymptotically stable when R0>1, i.e. when it exists
A multi-term solution of the space-time Boltzmann equation for electrons in gases and liquids
In this study we have developed a full multi-term space-time solution of Boltzmann's equation for electron transport in gases and liquids. A Green's function formalism is used that enables flexible adaptation to various experimental systems. The spatio-temporal evolution of electrons in liquids in the non-hydrodynamic regime is benchmarked for a model Percus-Yevick (PY) liquid against an independent Monte Carlo simulation, and then applied to liquid argon. The temporal evolution of Franck-Hertz oscillations in configuration and energy space are observed for the model liquid with large differences apparent when compared to the dilute gas case, for both the velocity distribution function components and the transport quantities. The packing density in the PY liquid is shown to influence both the magnitude and wavelength of Franck-Hertz oscillations of the steady-state Townsend (SST) simulation. Transport properties are calculated from the non-hydrodynamic theory in the long time limit under SST conditions which are benchmarked against hydrodynamic transport coefficients. Finally, the spatio-temporal relaxation of low-energy electrons in liquid argon was investigated, with striking differences evident in the spatio-temporal development of the velocity distribution function components between the uncorrelated gas and true liquid approximations, due largely to the presence of a Ramsauer minimum in the former and not in the latter
Unified fluid model analysis and benchmark study for electron transport in gas and liquid analogues
The interaction of plasmas with liquids requires an understanding of charged particle transport in both the gaseous and liquid phases. In this study we present a generalized fluid-equation framework to describe bulk electron transport in both gaseous and non-polar liquid environments under non-hydrodynamic non-equilibrium conditions. The framework includes liquid structural effects through appropriate inclusion of coherent scattering effects and adaption of swarm data to account for the modification to the scattering environment present in such systems. In the limit of low-densities it reduces to the traditional gas-phase fluid-equation model. Using a higher-order fluid model (four moments), it is shown that by applying steady state electron swarm data in both the gaseous and liquid phases, to close the system of equations and evaluate collisional rates, an improvement in macroscopic electron transport results over popular existing assumptions used. The failure of the local mean energy approximation in fluid models to accurately describe complex spatial oscillatory structures in both the gaseous and liquid phases is discussed in terms of the spatial variation of the electron distribution function itself