51 research outputs found

    fMRI reveals neural activity overlap between adult and infant pain

    Get PDF
    Limited understanding of infant pain has led to its lack of recognition in clinical practice. While the network of brain regions that encode the affective and sensory aspects of adult pain are well described, the brain structures involved in infant nociceptive processing are less well known, meaning little can be inferred about the nature of the infant pain experience. Using fMRI we identified the network of brain regions that are active following acute noxious stimulation in newborn infants, and compared the activity to that observed in adults. Significant infant brain activity was observed in 18 of the 20 active adult brain regions but not in the infant amygdala or orbitofrontal cortex. Brain regions that encode sensory and affective components of pain are active in infants, suggesting that the infant pain experience closely resembles that seen in adults. This highlights the importance of developing effective pain management strategies in this vulnerable population

    Determinants of Unlawful File Sharing: A Scoping Review

    Get PDF
    We employ a scoping review methodology to consider and assess the existing evidence on the determinants of unlawful file sharing (UFS) transparently and systematically. Based on the evidence, we build a simple conceptual framework to model the psychological decision to engage in UFS, purchase legally or do nothing. We identify social, moral, experiential, technical, legal and financial utility sources of the decision to purchase or to file share. They interact in complex ways. We consider the strength of evidence within these areas and note patterns of results. There is good evidence for influences on UFS within each of the identified determinants, particularly for self-reported measures, with more behavioral research needed. There are also indications that the reasons for UFS differ across media; more studies exploring media other than music are required

    Lipoprotein fingerprinting method

    No full text
    Methods are disclosed which separate and identify lipoproteins in biological samples. An ultracentrifuge density gradient is used to separate lipoprotein fractions. The fractions are visualized, resulting in a lipoprotein profile. The fractions can be further analyzed by a wide array of laboratory and clinical methods. The lipoprotein profile can be used in clinical diagnoses and other medical applications.U

    Lipoprotein fingerprinting methods using metal ion chelate salts

    No full text
    Methods are disclosed which separate and identify lipoproteins in biological samples. An ultracentrifuge density gradient is used to separate lipoprotein fractions. The fractions are visualized, resulting in a lipoprotein profile. The fractions can be further analyzed by a wide array of laboratory and clinical methods. The lipoprotein profile can be used in clinical diagnoses and other medical applications.U

    Lipoprotein fingerprinting methods using metal ion chelate salts

    No full text
    Methods are disclosed which separate and identify lipoproteins in biological samples. An ultracentrifuge density gradient is used to separate lipoprotein fractions. The fractions are visualized, resulting in a lipoprotein profile. The fractions can be further analyzed by a wide array of laboratory and clinical methods. The lipoprotein profile can be used in clinical diagnoses and other medical applications.U

    Lipoprotein fingerprinting method

    No full text
    Methods are disclosed which separate and identify lipoproteins in biological samples. An ultracentrifuge density gradient is used to separate lipoprotein fractions. The fractions are visualized, resulting in a lipoprotein profile. The fractions can be further analyzed by a wide array of laboratory and clinical methods. The lipoprotein profile can be used in clinical diagnoses and other medical applications.U

    Lipoprotein fingerprinting method

    No full text
    Methods are disclosed which separate and identify lipoproteins in biological samples. An ultracentrifuge density gradient is used to separate lipoprotein fractions. The fractions are visualized, resulting in a lipoprotein profile. The fractions can be further analyzed by a wide array of laboratory and clinical methods. The lipoprotein profile can be used in clinical diagnoses and other medical applications.U

    Lipoprotein fingerprinting method

    No full text
    Methods are disclosed which separate and identify lipoproteins in biological samples. An ultracentrifuge density gradient is used to separate lipoprotein fractions. The fractions are visualized, resulting in a lipoprotein profile. The fractions can be further analyzed by a wide array of laboratory and clinical methods. The lipoprotein profile can be used in clinical diagnoses and other medical applications.U

    Lipoprotein fingerprinting methods using metal ion chelate salts

    No full text
    Methods are disclosed which separate and identify lipoproteins in biological samples. An ultracentrifuge density gradient is used to separate lipoprotein fractions. The fractions are visualized, resulting in a lipoprotein profile. The fractions can be further analyzed by a wide array of laboratory and clinical methods. The lipoprotein profile can be used in clinical diagnoses and other medical applications.U
    corecore