15 research outputs found

    Structure et Mécanique du pli vocal humain : caractérisation et modélisation multi-échelles

    Get PDF
    The human vocal fold owns exceptional vibratory properties. It is capable of withstanding large deformations, for different types of loading, in a repeated and reversible manner. These particular vibro-mechanical properties are closely linked to its microstructure: a multi-layer complex structure composed of highly heterogeneous protein fibre networks. However, it is still difficult today to describe precisely the implication of the microstructural specificities of the fold in its biomechanical behaviour.In order to clarify this link and to move towards a better understanding of the behaviour of the vocal tissue, this study proposes to approach the problem under three complementary approaches, combining microstructural characterization, mechanical characterization and numerical modelling. First, the microstructure of the fold was studied emph{ex vivo} using an original technique based on X-ray tomography. The use of synchrotron tomography in phase retrieval mode has revealed the structure of the tissue at different scales. In particular, high-resolution 3D images of the fibrous structure of the upper and muscular layers of the tissue were acquired. These images gave rise to a quantitative 3D analysis of the fibrous arrangement, allowing the determination of descriptors of orientation and 3D geometry of the fibers.In a second step, the mechanical behaviour of the fabric under different loading conditions was studied. A protocol has been proposed to characterize the same sample in tension, compression and shear. These tests have complemented existing knowledge on fold biomechanics, and constitute important reference data for the construction and validation of digital models.Finally, based on the data acquired experimentally, a micro-mechanical model was developed. This model has the specificity to take into account the 3D arrangement of the tissue through an idealized but relevant representation of its fibrous microstructure. The macroscopic responses predicted for different loading conditionds could be compared to the experiment for validation. At the microscopic scale, the kinematics of the fibres during the loading could be simulated. The micromechanisms that occur during the deformation of the fibrous network could thus be identified, opening new perspectives in the understanding of the multi-scale properties of the tissue.Le pli vocal humain possède des propriétés vibratoires exceptionnelles. Il est capable de supporter de grandes déformations, pour différent type de chargement, de manière répétée et réversible. Ces propriétés vibro-mécaniques particulières sont étroitement liées à sa microstructure: une structure multi-couches complexe fortement hétérogène composées de réseaux de fibres protéique. Cependant, il est encore aujourd'hui difficile de décrire précisément l'implication des spécificités microstructurales du pli dans son comportement biomécanique.Afin de préciser ce lien et d'aller vers une meilleure compréhension du comportement du tissu vocal, cette étude se propose d'aborder la problématique sous trois approches complémentaires, mélant caractérisation microstructurale, caractérisation mécanique et modélisation numérique. Dans un premier temps, la microstructure du pli a été étudiée emph{ex vivo} à l'aide d'une technique originale basée sur la tomographie à rayon X. L'usage de tomographie synchrotron par contraste de phase a permis de révéler la structure du tissu à différentes échelles. En particulier, des clichés 3D à forte résolution de la structure fibreuse des couches supérieures et musculaires du tissu ont pu être acquis. Ces clichés ont donné lieu à une analyse 3D quantitative de l'arrangement fibreux, permettant la détermination de descripteur d'orientation et de géométrie 3D des fibres.Dans un second temps, le comportement mécanique du tissu sous différentes conditions de chargement a été étudié. Un protocole a été proposé, afin de caractériser un même échantillon en traction, en compression et en cisaillement. Ces essais ont permis de compléter les connaissances existantes sur la biomécanique de pli, et constitue des données de références importantes pour la construction et la validation de modèle numérique.A partir des données acquises expérimentalement, un modèle micro mécanique a été développé. Ce modèle a la spécificité de prendre en compte l'arrangement 3D du tissu à travers une représentation idéalisée mais pertinente de sa microstructure fibreuse. Les réponses macroscopiques prédites pour différents chargements ont pu être comparées à l'expérience pour validation. A l'échelle microscopique, la cinématique des fibres au cours du chargement a pu être simulée. Les micromécanismes ayant lieu au cours de la déformation du réseau fibreux ont ainsi pu être identifiés, ouvrant de nouvelles perspectives dans la compréhension des propriétés multi-échelles du tissu

    Human vocal fold structure and mechanics : multi-scale characterisation and modelling

    No full text
    Le pli vocal humain possède des propriétés vibratoires exceptionnelles. Il est capable de supporter de grandes déformations, pour différent type de chargement, de manière répétée et réversible. Ces propriétés vibro-mécaniques particulières sont étroitement liées à sa microstructure: une structure multi-couches complexe fortement hétérogène composées de réseaux de fibres protéique. Cependant, il est encore aujourd'hui difficile de décrire précisément l'implication des spécificités microstructurales du pli dans son comportement biomécanique.Afin de préciser ce lien et d'aller vers une meilleure compréhension du comportement du tissu vocal, cette étude se propose d'aborder la problématique sous trois approches complémentaires, mélant caractérisation microstructurale, caractérisation mécanique et modélisation numérique. Dans un premier temps, la microstructure du pli a été étudiée emph{ex vivo} à l'aide d'une technique originale basée sur la tomographie à rayon X. L'usage de tomographie synchrotron par contraste de phase a permis de révéler la structure du tissu à différentes échelles. En particulier, des clichés 3D à forte résolution de la structure fibreuse des couches supérieures et musculaires du tissu ont pu être acquis. Ces clichés ont donné lieu à une analyse 3D quantitative de l'arrangement fibreux, permettant la détermination de descripteur d'orientation et de géométrie 3D des fibres.Dans un second temps, le comportement mécanique du tissu sous différentes conditions de chargement a été étudié. Un protocole a été proposé, afin de caractériser un même échantillon en traction, en compression et en cisaillement. Ces essais ont permis de compléter les connaissances existantes sur la biomécanique de pli, et constitue des données de références importantes pour la construction et la validation de modèle numérique.A partir des données acquises expérimentalement, un modèle micro mécanique a été développé. Ce modèle a la spécificité de prendre en compte l'arrangement 3D du tissu à travers une représentation idéalisée mais pertinente de sa microstructure fibreuse. Les réponses macroscopiques prédites pour différents chargements ont pu être comparées à l'expérience pour validation. A l'échelle microscopique, la cinématique des fibres au cours du chargement a pu être simulée. Les micromécanismes ayant lieu au cours de la déformation du réseau fibreux ont ainsi pu être identifiés, ouvrant de nouvelles perspectives dans la compréhension des propriétés multi-échelles du tissu.The human vocal fold owns exceptional vibratory properties. It is capable of withstanding large deformations, for different types of loading, in a repeated and reversible manner. These particular vibro-mechanical properties are closely linked to its microstructure: a multi-layer complex structure composed of highly heterogeneous protein fibre networks. However, it is still difficult today to describe precisely the implication of the microstructural specificities of the fold in its biomechanical behaviour.In order to clarify this link and to move towards a better understanding of the behaviour of the vocal tissue, this study proposes to approach the problem under three complementary approaches, combining microstructural characterization, mechanical characterization and numerical modelling. First, the microstructure of the fold was studied emph{ex vivo} using an original technique based on X-ray tomography. The use of synchrotron tomography in phase retrieval mode has revealed the structure of the tissue at different scales. In particular, high-resolution 3D images of the fibrous structure of the upper and muscular layers of the tissue were acquired. These images gave rise to a quantitative 3D analysis of the fibrous arrangement, allowing the determination of descriptors of orientation and 3D geometry of the fibers.In a second step, the mechanical behaviour of the fabric under different loading conditions was studied. A protocol has been proposed to characterize the same sample in tension, compression and shear. These tests have complemented existing knowledge on fold biomechanics, and constitute important reference data for the construction and validation of digital models.Finally, based on the data acquired experimentally, a micro-mechanical model was developed. This model has the specificity to take into account the 3D arrangement of the tissue through an idealized but relevant representation of its fibrous microstructure. The macroscopic responses predicted for different loading conditionds could be compared to the experiment for validation. At the microscopic scale, the kinematics of the fibres during the loading could be simulated. The micromechanisms that occur during the deformation of the fibrous network could thus be identified, opening new perspectives in the understanding of the multi-scale properties of the tissue

    A micro-mechanical model for the fibrous tissues of vocal folds

    No full text
    International audienceComposed of collagen, elastin and muscular fibrous networks, vocal folds are soft laryngeal multi-layered tissues owning remarkable vibro-mechanical performances. However, the impact of their histological features on their overall mechanical properties still remains elusive. Thereby, this study presents a micro-mechanical hyperelastic model able to describe the 3D fibrous architecture and the surrounding matrices of the vocal-fold sublayers, and to predict their mechanical behavior. For each layer, the model parameters were identified using available histo-mechanical data, including their quasi-static response for key physiological loading paths, i.e., longitudinal tension, transverse compression and longitudinal shear. Regardless of the loading path, it is shown how macroscale nonlinear, anisotropic tissue responses are inherited from the fiber scale. Scenarios of micro-mechanisms are predicted, highlighting the major role of 3D fiber orientation in tension, steric hindrance in compression, and matrix contribution in shear. Finally, combining these predictions to vibrating hyperelastic Timoshenko beam’s theory, the impact of the fibrous architecture of the upper layers on vocal-fold vibratory properties is emphasized

    A micro-mechanical model of the vocal-fold upper layers

    No full text
    International audienceThe vocal folds are soft multi-layered laryngeal tissues, owning remarkable vibro-mechanical performances. Composed of collagen and elastin microfibrils' networks, the upper layers play a major role in the vocal-fold vibrations. However, the impact of these tissues' histological features on their mechanical behavior is still poorly known. This is mainly ascribed to their challenging experimental characterization: vocal folds together with their fibrous architectures are not easily observable in vivo; ex vivo mechanical tests are rare and complex to interpret [1]. Consequently, most of the vocal-fold mechanical models developed so far rely on phenomenological macroscopic approaches, roughly assuming a homogeneous vocal tissue with linear-elastic properties. Since 2010, a few authors have started to investigate and model the vocal-tissue collagenous fibrous microstructure, opening a new insight into voice biomechanics [2]. Theoretical formulations at the fiber scale still need to be developed. Thereby, this study aims at: (i) proposing an idealized but relevant model of the fibrous architecture of the vocal-fold upper layers; (ii) building a mechanical model able to predict the layers' multiscale properties from the above idealized architectures; (iii) assessing its relevance by comparison with a reference tensile database

    Mechanics of human vocal folds layers during finite strains in tension, compression and shear

    No full text
    International audienceDuring phonation, human vocal fold tissues are subjected to combined tension, compression and shear loadings modes from small to large finite strains. Their mechanical behaviour is however still not well understood. Herein, we complete the existing mechanical database of these soft tissues, by characterising, for the first time, the cyclic and finite strains behaviour of the lamina propria and vocalis layers under these loading modes. To minimise the inter or intra-individual variability, particular attention was paid to subject each tissue sample successively to the three loadings. A nonlinear mechanical behaviour is observed for all loading modes : a J-shape strain stiffening in longitudinal tension and transverse compression, albeit far less pronounced in shear, stress accommodation and stress hysteresis whatever the loading mode. In addition, recorded stress levels during longitudinal tension are much higher for the lamina propria than for the vocalis. Conversely, the responses of the lamina propria and the vocalis in transverse compression as well as transverse and longitudinal shears are of the same orders of magnitude. We also highlight the strain rate sensitivity of the tissues, as well as their anisotropic properties

    Elasticité et cordes vocales: De la biomécanique du pli vocal à la phonation humaine

    No full text
    Présentation pdf diffusée en ligne, figures publiées dans la photothèque du CNRS - donnant suite à Leroux et al., CNRS Le Journal, 2017http://www.cnrs.fr/insis/recherche/docs-evenements/HommeElastique_LucieBailly.pdfNational audienc

    Vocal-fold 3D micro-architecture and micro-mechanics: a multimodal imaging study

    No full text
    International audienceObjectives: Current understanding of the histological features of the vocal folds is still insufficient to make the link to their vibromechanical performance. In particular, the 3D microscale rearrangement of the loaded tissues is still to be explored. Thus, the aim of this work is to characterize the 3D histological specificities of human vocal folds' fibrous networks and their straininduced microstructure evolutions under tensile loading, at the scale of the muscular, collagen and elastin microfiber bundles
    corecore