1,199 research outputs found

    Gravitational-Wave Stochastic Background Detection with Resonant-Mass Detectors

    Get PDF
    In this paper we discuss how the standard optimal Wiener filter theory can be applied, within a linear approximation, to the detection of an isotropic stochastic gravitational-wave background with two or more detectors. We apply then the method to the AURIGA-NAUTILUS pair of ultra low temperature bar detectors, near to operate in coincidence in Italy, obtaining an estimate for the sensitivity to the background spectral density of $\simeq 10^{-49}\ Hz^{-1},thatconvertstoanenergydensityperunitlogarithmicfrequencyof, that converts to an energy density per unit logarithmic frequency of \simeq 8\times10^{-5}\times\rho_cwith with \rho_c\simeq1.9 \times 10^{-26}\ kg/m^3theclosuredensityoftheUniverse.WealsoshowthatbyaddingtheVIRGOinterferometricdetectorunderconstructioninItalytothearray,andbyproperlyre−orientingthedetectors,onecanreachasensitivityof the closure density of the Universe. We also show that by adding the VIRGO interferometric detector under construction in Italy to the array, and by properly re- orienting the detectors, one can reach a sensitivity of \simeq 6 \times10^{-5}\times\rho_c.WethencalculatethatthepairformedbyVIRGOandonelargemasssphericaldetectorproperlylocatedinoneofthenearbyavailablesitesinItalycanreahasensitivityof. We then calculate that the pair formed by VIRGO and one large mass spherical detector properly located in one of the nearby available sites in Italy can reah a sensitivity of \simeq 2\times10^{-5}\times \rho_cwhileapairofsuchsphericaldetectorsatthesamesitesofAURIGAandNAUTILUScanachievesensitivitiesof while a pair of such spherical detectors at the same sites of AURIGA and NAUTILUS can achieve sensitivities of \simeq 2 \times10^{-6}\rho_c$.Comment: 32 pages, postscript file, also available at http://axln01.lnl.infn.it/reports/stoch.htm

    Detectability of gravitational wave events by spherical resonant-mass antennas

    Get PDF
    We have calculated signal-to-noise ratios for eight spherical resonant-mass antennas interacting with gravitational radiation from inspiralling and coalescing binary neutron stars and from the dynamical and secular bar-mode instability of a rapidly rotating star. We find that by using technology that could be available in the next several years, spherical antennas can detect neutron star inspiral and coalescence at a distance of 15 Mpc and the dynamical bar-mode instability at a distance of 2 Mpc.Comment: 39 pages, 4 EPS Figures, some additional SNRs for secular instabilities, some changes to LIGO SNRs, Appendix added on the asymptotic expansion of energy sensitivity, corrected supernova rates. Results available at http://www.physics.umd.edu/rgroups/gen_rel_exp/snr.html Submitted to Phys. Rev.

    Testing Theories of Gravity with a Spherical Gravitational Wave Detector

    Get PDF
    We consider the possibility of discriminating different theories of gravity using a recently proposed gravitational wave detector of spherical shape. We argue that the spin content of different theories can be extracted relating the measurements of the excited spheroidal vibrational eigenmodes to the Newman-Penrose parameters. The sphere toroidal modes cannot be excited by any metric GW and can be thus used as a veto.Comment: latex file, 16 pages, 1 figur

    Gravitational wave astronomy

    Get PDF
    The first decade of the new millenium should see the first direct detections of gravitational waves. This will be a milestone for fundamental physics and it will open the new observational science of gravitational wave astronomy. But gravitational waves already play an important role in the modeling of astrophysical systems. I review here the present state of gravitational radiation theory in relativity and astrophysics, and I then look at the development of detector sensitivity over the next decade, both on the ground (such as LIGO) and in space (LISA). I review the sources of gravitational waves that are likely to play an important role in observations by first- and second-generation interferometers, including the astrophysical information that will come from these observations. The review covers some 10 decades of gravitational wave frequency, from the high-frequency normal modes of neutron stars down to the lowest frequencies observable from space. The discussion of sources includes recent developments regarding binary black holes, spinning neutron stars, and the stochastic background.Comment: 29 pages, 2 figures, as submitted for special millenium issue of Classical and Quantum Gravit

    The detection of Gravitational Waves

    Get PDF
    This chapter is concerned with the question: how do gravitational waves (GWs) interact with their detectors? It is intended to be a theory review of the fundamental concepts involved in interferometric and acoustic (Weber bar) GW antennas. In particular, the type of signal the GW deposits in the detector in each case will be assessed, as well as its intensity and deconvolution. Brief reference will also be made to detector sensitivity characterisation, including very summary data on current state of the art GW detectors.Comment: 33 pages, 12 figures, LaTeX2e, Springer style files --included. For Proceedings of the ERE-2001 Conference (Madrid, September 2001

    On the possible sources of gravitational wave bursts detectable today

    Full text link
    We discuss the possibility that galactic gravitational wave sources might give burst signals at a rate of several events per year, detectable by state-of-the-art detectors. We are stimulated by the results of the data collected by the EXPLORER and NAUTILUS bar detectors in the 2001 run, which suggest an excess of coincidences between the two detectors, when the resonant bars are orthogonal to the galactic plane. Signals due to the coalescence of galactic compact binaries fulfill the energy requirements but are problematic for lack of known candidates with the necessary merging rate. We examine the limits imposed by galactic dynamics on the mass loss of the Galaxy due to GW emission, and we use them to put constraints also on the GW radiation from exotic objects, like binaries made of primordial black holes. We discuss the possibility that the events are due to GW bursts coming repeatedly from a single or a few compact sources. We examine different possible realizations of this idea, such as accreting neutron stars, strange quark stars, and the highly magnetized neutron stars (``magnetars'') introduced to explain Soft Gamma Repeaters. Various possibilities are excluded or appear very unlikely, while others at present cannot be excluded.Comment: 24 pages, 20 figure

    The TIGA technique for detecting gravitational waves with a spherical antenna

    Get PDF
    We report the results of a theoretical and experimental study of a spherical gravitational wave antenna. We show that it is possible to understand the data from a spherical antenna with 6 radial resonant transducers attached to the surface in the truncated icosahedral arrangement. We find that the errors associated with small deviations from the ideal case are small compared to other sources of error, such as a finite signal-to-noise ratio. An in situ measurement technique is developed along with a general algorithm that describes a procedure for determining the direction of an external force acting on the antenna, including the force from a gravitational wave, using a combination of the transducer responses. The practicality of these techniques was verified on a room-temperature prototype antenna.Comment: 15 pages, 14 figures, submitted to Physical Review

    All-sky search of NAUTILUS data

    Full text link
    A search for periodic gravitational-wave signals from isolated neutron stars in the NAUTILUS detector data is presented. We have analyzed half a year of data over the frequency band Hz,thespindownrange Hz, the spindown range Hz/s and over the entire sky. We have divided the data into 2 day stretches and we have analyzed each stretch coherently using matched filtering. We have imposed a low threshold for the optimal detection statistic to obtain a set of candidates that are further examined for coincidences among various data stretches. For some candidates we have also investigated the change of the signal-to-noise ratio when we increase the observation time from two to four days. Our analysis has not revealed any gravitational-wave signals. Therefore we have imposed upper limits on the dimensionless gravitational-wave amplitude over the parameter space that we have searched. Depending on frequency, our upper limit ranges from 3.4×10−233.4 \times 10^{-23} to 1.3×10−221.3 \times 10^{-22}. We have attempted a statistical verification of the hypotheses leading to our conclusions. We estimate that our upper limit is accurate to within 18%.Comment: LaTeX, 12 page

    Comparison of advanced gravitational-wave detectors

    Get PDF
    We compare two advanced designs for gravitational-wave antennas in terms of their ability to detect two possible gravitational wave sources. Spherical, resonant mass antennas and interferometers incorporating resonant sideband extraction (RSE) were modeled using experimentally measurable parameters. The signal-to-noise ratio of each detector for a binary neutron star system and a rapidly rotating stellar core were calculated. For a range of plausible parameters we found that the advanced LIGO interferometer incorporating RSE gave higher signal-to-noise ratios than a spherical detector resonant at the same frequency for both sources. Spheres were found to be sensitive to these sources at distances beyond our galaxy. Interferometers were sensitive to these sources at far enough distances that several events per year would be expected

    First upper limit analysis and results from LIGO science data: stochastic background

    Full text link
    I describe analysis of correlations in the outputs of the three LIGO interferometers from LIGO's first science run, held over 17 days in August and September of 2002, and the resulting upper limit set on a stochastic background of gravitational waves. By searching for cross-correlations between the LIGO detectors in Livingston, LA and Hanford, WA, we are able to set a 90% confidence level upper limit of h_{100}^2 Omega_0 < 23 +/- 4.6.Comment: 7 pages; 1 eps figures; proceeding from 2003 Edoardo Amaldi Meeting on Gravitational Wave
    • 

    corecore