35 research outputs found

    A comparison of melatonin and α-lipoic acid in the induction of antioxidant defences in L6 rat skeletal muscle cells.

    Get PDF
    Aging is characterized by a progressive deterioration in physiological functions and metabolic processes. The loss of cells during aging in vital tissues and organs is related to several factors including oxidative stress and inflammation. Skeletal muscle degeneration is common in elderly people; in fact, this tissue is particularly vulnerable to oxidative stress since it requires large amounts of oxygen, and thus, oxidative damage is abundant and accumulates with increasing age. Melatonin (N-acetyl-5-methoxytryptamine) is a highly efficient scavenger of reactive oxygen species and it also exhibits beneficial anti-inflammatory and anti-aging effects. This study investigated the susceptibility of rat L6 skeletal muscle cells to an induced oxidative stress following their exposure to hydrogen peroxide (50 μM) and evaluating the potential protective effects of pre-treatment with melatonin (10 nM) compared to the known beneficial effect of alpha-lipoic acid (300 μM). Hydrogen peroxide-induced obvious oxidative stress; it increased the expression of tumour necrosis factor-alpha and in turn promoted nuclear factor kappa-B and overrode the endogenous defence mechanisms. Conversely, pre-treatment of the hydrogen peroxide-exposed cells to melatonin or alpha-lipoic acid increased endogenous antioxidant enzymes, including superoxide dismutase-2 and heme oxygenase-1; moreover, they ameliorated significantly oxidative stress damage and partially reduced alterations in the muscle cells, which are typical of aging. In conclusion, melatonin was equally effective as alpha-lipoic acid; it exhibited marked antioxidant and anti-aging effects at the level of skeletal muscle in vitro even when it was given in a much lower dose than alpha-lipoic acid

    Aging of brain in hypercholesterolemic mice (ApoE -/-): melatonin receptor distribution

    Get PDF
    The protective role of melatonin has been investigated [1]. Some studies underlined its significant neuroprotective action with a role in aging processing. In patients with Alzheimer’s Disease, parallel to degenerative tissue changes, there was an overall decrease in the intensity of melatonin receptors in the pineal gland and occipital cortex [2]. Melatonin type 1 (MT1) and type 2 (MT2) receptors disclosed a quite widespread distribution in different brain regions. Recently our group demonstrated that an animal model of hypercholesterolemia, such as ApoE-/- mice, is more susceptible to developing severe liver injury, suggesting that in addition to vascular disease, increased cholesterol products and oxidative stress may also play a role in accelerating aging in the liver [3]. On the basis of this consideration, the aim of our work is to characterize the distribution of MT1 and MT2 in brain of ApoE -/- mice at different age (6 weeks, 16 weeks and 60 weeks) together with senescence markers using immunohistochemical technique to verify the role of these receptors in aging process. The results show an altered distribution of melatonin receptors and synaptic connectivity, indicating a process of aging in ApoE -/- mice and suggesting that melatonin treatment may represent a new approach to reduce brain aging and degeneration

    H2O2 stress damage is reversed by melatonin in a spinal cord organotypic model

    Get PDF
    Spinal cord injury (SCI) is characterized to be a two-step process: the primary lesion consisting of the initial trauma; the secondary damage, characterized by multiple processes including inflammation, oxidative stress and cell death that lead to a significant expansion of the original damage and to an increase of the functional deficit (1). Among the aforementioned processes, the oxidative stress plays a significant role in pathophysiology of SCI. In this study, we evaluated the role of the melatonin, an indoleamine recognized as a potent antioxidant and immunomodulator (2, 3 )Reiter et al., 1995, Favero et al., 2015), on the oxidative stress, the tissue vitality and the neuritic plasticity in an experimental model of organotypic cultures of Sprague Dawley rat spinal cord slice (SPS) treated with hydrogen peroxide (H2O2) and/or melatonin. Five experimental protocols were performed: 1) control; 2) H2O2 exposure (50 μM); 3) melatonin treatment (5-10M for 24 hours); 4) H2O2 exposure and post-treatment with melatonin; 5) H2O2 exposure after pre-treatment with melatonin. Cellular death was investigated by propidium iodide (PI) assay and the vitality by MTT assay. The total thiols (SH) levels, contrasting the oxidative stress, the neuronal specific nuclear protein (NeuN) and the synaptophysin (Syp) immunopositivity were also evaluated. Melatonin significantly decreases the number of dead cells and increases slice vitality, mainly in slices treated before H2O2 exposure. Moreover, melatonin attenuates total thiols decrease and NeuN and Syp immunopositivity reduction. Overall, these findings suggest that melatonin may exert a potential beneficial effect upon the progression of SCI secondary damage, protecting the tissue from a further degeneration.This work was supported by grants from Giorgio Brunelli Foundation for Spinal Cord Injuries Research

    Epithelial expression of vanilloid and cannabinoid receptors: a potential role in burning mouth syndrome pathogenesis

    Get PDF
    Burning mouth syndrome is an intraoral burning sensation in which the oral mucosa has a normal appearance and no medical or dental causes can be found. It remains an unknown disease for which long-term treatment is still lacking. The aim of this study is to assess in epithelial human tongue the expression of three receptors involved in pain transmission, such as a transient receptor potential vanilloid receptor type 1 (TRPV1) which mediates the sensation produced by chilli peppers, cannabinoid receptors type 1 (CB1) and type 2 (CB2), which are pathway-related to TRPV1. Epithelial cells express TRPV1, CB1 and CB2 receptors suggesting a role for these cells in sensory transduction. The study was performed on 8 healthy and 9 BMS patients. All patients underwent a 3-mm punch biopsy at the anterolateral aspect of the tongue close to the tip. Specimens were included in paraffin and serially cut to obtain 6um thick sections. The sections were processed for TRPV1, CB1 and CB2 immunohistochemistry. The analysis showed an altered expression of the studied receptors. In particular we observed an increase of TRPV1, a decrease of CB1 and an increase of CB2 expression in epithelial cells of the tongue with a change in morphological localization. So, these receptors seem to be correlated with BMS. These data could be useful for future characterization of BMS markers and specific therapies

    Platelet Rich Plasma stimulates human hair growth in vitro

    Get PDF
    Several factors are involved in hair growth and cycling (Buffoli et al., 2013). Platelet concentrates have a new important role in regenerative medicine and thus in dermatology, oral, plastic and orthopaedic surgery and hair growth (Franco et al., 2012). In this study we evaluated in vitro the effects of Platelet-Rich Plasma (PRP), an autologous platelet preparation, on hair growth. In particular, we compared four different culture media (Philpott et al., 1990): 1-William’s E culture medium with supplemented factors; 2-William’s E culture medium with supplemented factors and Platelet Rich Plasma; 3-William’s E culture medium without supplemented factors; 4-William’s E culture medium without supplemented factors but with PRP. Hair shaft elongation was measured at 0, 24, 48, 72 and 96 hours: digitally fixed images of slices were analyzed using an image analyzer considering as measurable portion the shaft part between the bulb upper border and the top of the hair end. The values obtained were used to calculate the percentage of elongation for each time. Growth in hair cultured with William’s E medium with supplemented factors and PRP resulted higher with respect to the other media. Moreover, these results suggest that PRP stimulates human hair growth in vitro

    Sirtuin 6 localization at cortical brain level of young diabetic mice

    Get PDF
    The metabolic syndrome, characterized by visceral obesity, dyslipidaemia, hyperglycaemia and hypertension, has become one of the major public-health challenges worldwide and it is strictly associated with the development of type II diabetes and neurodegenerative diseases (Alberti et al. 2005; Panza et al. 2010). Increased metabolic flux to the brain during overnutrition can orchestrate stress response, blood-brain barrier alteration, microglial cells activation and neuroinflammation (Nerurkar et al., 2011). The protein sirtuin family is a class of nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase that act on a variety of targets and so play a key role in central physiological regulation (Sebastian et al., 2012; Wang et al., 2012). To assess the physiopathological significance of sirtuin6 (SIRT6) at brain cortical level, we analysed its specific expression and subcellular localization in young db/db mice, animal model of type II diabetes mellitus, and respective control lean mice. In particular, we analysed the cytoarchitecture of the brain cortex, evaluated SIRT6 expression and its localization by immunohistochemistry comparing young db/db mice to lean control mice, distinguishing among the six cortical layers and between motor and somatosensory cortex. We observed that SIRT6 is mainly localized in the nucleus of both lean and db/db mice. Diabetic mice showed few SIRT6 positive cells respect to lean control mice in all cortical layers without significant differences between motor and somatosensory cortex. No morphological alteration have been find. In conclusion, our findings contribute to further understand SIRT6 protein expression in the early steps of type II diabetes mellitus and suggest its implication in the pathogenic processes of diabetes mellitus and diabetes–induced neurodegeneration

    Sirtuin 6 localization at cortical brain level of young diabetic mice

    Get PDF
    The metabolic syndrome, characterized by visceral obesity, dyslipidaemia, hyperglycaemia and hypertension, has become one of the major public-health challenges worldwide and it is strictly associated with the development of type II diabetes and neurodegenerative diseases (Alberti et al. 2005; Panza et al. 2010). Increased metabolic flux to the brain during overnutrition can orchestrate stress response, blood-brain barrier alteration, microglial cells activation and neuroinflammation (Nerurkar et al., 2011). The protein sirtuin family is a class of nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase that act on a variety of targets and so play a key role in central physiological regulation (Sebastian et al., 2012; Wang et al., 2012). To assess the physiopathological significance of sirtuin6 (SIRT6) at brain cortical level, we analysed its specific expression and subcellular localization in young db/db mice, animal model of type II diabetes mellitus, and respective control lean mice. In particular, we analysed the cytoarchitecture of the brain cortex, evaluated SIRT6 expression and its localization by immunohistochemistry comparing young db/db mice to lean control mice, distinguishing among the six cortical layers and between motor and somatosensory cortex. We observed that SIRT6 is mainly localized in the nucleus of both lean and db/db mice. Diabetic mice showed few SIRT6 positive cells respect to lean control mice in all cortical layers without significant differences between motor and somatosensory cortex. No morphological alteration have been find. In conclusion, our findings contribute to further understand SIRT6 protein expression in the early steps of type II diabetes mellitus and suggest its implication in the pathogenic processes of diabetes mellitus and diabetes–induced neurodegeneration

    Atlas rotation and mandibular deviation by Cone Beam CT

    Get PDF
    Cervical vertebrae and mandible are functionally related and some evidences suggest a strong correlation between their relative position and orientation (Huggare et al., 1996; Nisayif et al., 2005). In this study TC Dental Scan with cone beam technology was used to study the relationship between atlas and mandibular rotation in 205 patients. Using a digitalized images analyser, we calculated the axial rotation of atlas and mandible, measuring the angle with respect to the frontal plane. We found that 80.98% of patients presented the axial rotation of the mandible in the same direction of atlas rotation compared with 19.02% of patients that presented opposite directions. Among the consistent group, 71.08% of patients had a left rotation compared with 28.92% that had a right rotation. Moreover, considering the absolute values of the rotation, we observed that the atlas had a more marked rotation with respect to the mandible and that the values of left rotations were higher with respect to the value recorded for right rotations both for the mandible and atlas measurements. This study represents a starting point to better characterize the relationship between atlas and mandible; further studies are necessary to better understand the importance of this data from a functional and clinical point of view

    A global collaboRAtive study of CIC-rearranged, BCOR::CCNB3-rearranged and other ultra-rare unclassified undifferentiated small round cell sarcomas (GRACefUl)

    Get PDF
    [Background] Undifferentiated small round cell sarcomas (URCSs) represent a diagnostic challenge, and their optimal treatment is unknown. We aimed to define the clinical characteristics, treatment, and outcome of URCS patients.[Methods] URCS patients treated from 1983 to 2019 at 21 worldwide sarcoma reference centres were retrospectively identified. Based on molecular assessment, cases were classified as follows: (1) CIC-rearranged round cell sarcomas, (2) BCOR::CCNB3-rearranged round cell sarcomas, (3) unclassified URCSs. Treatment, prognostic factors and outcome were reviewed.[Results] In total, 148 patients were identified [88/148 (60%) CIC-rearranged sarcoma (median age 32 years, range 7–78), 33/148 (22%) BCOR::CCNB3-rearranged (median age 17 years, range 5–91), and 27/148 (18%) unclassified URCSs (median age 37 years, range 4–70)]. One hundred-one (68.2%) cases presented with localised disease; 47 (31.8%) had metastases at diagnosis. Male prevalence, younger age, bone primary site, and a low rate of synchronous metastases were observed in BCOR::CCNB3-rearranged cases. Local treatment was surgery in 67/148 (45%) patients, and surgery + radiotherapy in 52/148 (35%). Chemotherapy was given to 122/148 (82%) patients. At a 42.7-month median follow-up, the 3-year overall survival (OS) was 92.2% (95% CI 71.5–98.0) in BCOR::CCNB3 patients, 39.6% (95% CI 27.7–51.3) in CIC-rearranged sarcomas, and 78.7% in unclassified URCSs (95% CI 56.1–90.6; p < 0.0001).[Conclusions] This study is the largest conducted in URCS and confirms major differences in outcomes between URCS subtypes. A full molecular assessment should be undertaken when a diagnosis of URCS is suspected. Prospective studies are needed to better define the optimal treatment strategy in each URCS subtype.This work was supported by the Carisbo Foundation Call for Translational and Clinical Medical Research.Peer reviewe
    corecore