49 research outputs found
Dietary carbon sources of mussels and tubeworms from Galápagos hydrothermal vents determined from tissue 14C activity
The large quantities of reduced carbon that are required to support the filter-feeding mytilid mussels (Mytilus sp.), vesi-comyid clams (Calyptogena sp.) and various other animals in the Galápagos hydrothermal vent systems are thought to be derived from either the in situ synthesis of particulate organic matter by chemoautotrophic, sulphide-oxidizing bacteria1,2 or by the advection of sedimentary organic carbon into the vent environment from surrounding areas3,4. In contrast, the dense populations of vestimentiferan tubeworms (Riftia pachyptila), which lack mouth organs and digestive tracts, apparently utilize organic carbon synthesized by symbiotic chemoautotrophs5. We present evidence here, based on 14C activities and 13C/12C ratios, that the principal source of dietary carbon for mussels and tubeworms is derived from the dissolved inorganic carbon (DIOC) in the vent effluent waters. © 1981 Nature Publishing Group
Fluxes of biogenic components from sediment trap deployment in circumpolar waters of the Drake Passage
Circumpolar surface waters dominate the circulation of the Southern Ocean and sustain one of the ocean's largest standing stocks of biomass thereby producing a significant output of biogenic components, mainly diatoms, to the bottom sediments. Generally transit of biogenic matter from the sea surface to the sea floor affects nutrient regeneration fuels benthic life and transfers signals to the sediment record1–5. Reliable quantification of the relationship between biological production, fractionation of skeletal and tissue components and bottom sediment accumulation depends on direct vertical flux measurements from sediment trap deployments6–9, which have proved to be most scientifically productive10–13. We now present data on vertical mass fluxes from the Southern Ocean and evidence for strong biogeochemical fractionation between organic carbon-, nitrogen- and phosphorus-containing compounds, siliceous and calcareous skeletal remains, and refractory aluminosilicates
Enrollment Facilitators and Barriers Among African-American Students in Kinesiology
To enhance student diversity, kinesiology departments must understand those factors facilitating and hampering enrollment decisions among prospective minority candidates. The primary purpose of this study was to identify facilitators and barriers to kinesiology-based academic programs among minority students. The secondary purpose was to determine if perceived facilitators and barriers differed from White students in the same programs
Differences between African-American and Caucasian Students on Enrollment Influences and Barriers in Kinesiology-Based Allied Health Education Programs
Kinesiology departments have recently started to offer allied health education programs to attract additional students to teacher education units. Although allied health professions offer increased work opportunities, insufficient enrollment and training of minority students in these academic fields contribute to underrepresentation in the workforce. To improve workforce diversity, kinesiology departments must understand how enrollment influences and barriers differ by race among prospective students. Therefore, the purpose of this study was to identify differences in allied health education enrollment influences and enrollment barriers between minority and Caucasian students. Participants (n = 601) consisted of students enrolled in kinesiology-based allied health education programs. Multivariate ANOVA was used to compare group differences in enrollment decision making. “Personal influence,” “career opportunity,” and “physical self-efficacy” were all significantly stronger enrollment influences among African-American students than among Caucasian students, and “social influence,” “experiential opportunity,” “academic preparation,” and “physical self-efficacy” were all perceived as significantly greater barriers compared with Caucasian students. Findings support the need to recruit African-American students through sport and physical education settings and to market program-based experiential opportunities
Recommended from our members
Separating Hazardous Aerosols from Ambient Aerosols: Role of Fluorescence-Spectral Determination, Aerodynamic Deflector and Pulse Aerodynamic Localizer (PAL)
An aerosol deflection technique based on the single-shot UV-laser-induced fluorescence spectrum from a flowing particle is presented as a possible front-end bio-aerosol/hazardous-aerosol sensor/identifier. Cued by the fluorescence spectra, individual flowing bio-aerosol particles (1-10 {micro}m in diameter) have been successfully deflected from a stream of ambient aerosols. The electronics needed to compare the fluorescence spectrum of a particular particle with that of a pre-determined fluorescence spectrum are presented in some detail. The deflected particles, with and without going through a funnel for pulse aerodynamic localization (PAL), were collected onto a substrate for further analyses. To demonstrate how hazardous materials can be deflected, TbCl{sub 3} {center_dot} 6H{sub 2}O (a simulant material for some chemical forms of Uranium Oxide) aerosol particles (2 {micro}m in diameter) mixed with Arizona road dust was separated and deflected with our system