6,116 research outputs found

    A Project Based Approach to Statistics and Data Science

    Full text link
    In an increasingly data-driven world, facility with statistics is more important than ever for our students. At institutions without a statistician, it often falls to the mathematics faculty to teach statistics courses. This paper presents a model that a mathematician asked to teach statistics can follow. This model entails connecting with faculty from numerous departments on campus to develop a list of topics, building a repository of real-world datasets from these faculty, and creating projects where students interface with these datasets to write lab reports aimed at consumers of statistics in other disciplines. The end result is students who are well prepared for interdisciplinary research, who are accustomed to coping with the idiosyncrasies of real data, and who have sharpened their technical writing and speaking skills

    Discovery of a supernova associated with GRB 031203: SMARTS Optical-Infrared Lightcurves from 0.2 to 92 days

    Full text link
    Optical and infrared monitoring of the afterglow site of gamma-ray burst (GRB) 031203 has revealed a brightening source embedded in the host galaxy, which we attribute to the presence of a supernova (SN) related to the GRB ("SN 031203"). We present details of the discovery and evolution of SN 031203 from 0.2 to 92 days after the GRB, derived from SMARTS consortium photometry in I and J bands. A template type Ic lightcurve, constructed from SN 1998bw photometry, is consistent with the peak brightness of SN 031203 although the lightcurves are not identical. Differential astrometry reveals that the SN, and hence the GRB, occurred less than 300 h_71^-1 pc (3-sigma) from the apparent galaxy center. The peak of the supernova is brighter than the optical afterglow suggesting that this source is intermediate between a strong GRB and a supernova.Comment: 11 pages, 3 figures, submitted to ApJ Letter

    Experimentally Constrained Molecular Relaxation: The Case of Glassy GeSe2

    Full text link
    An ideal atomistic model of a disordered material should contradict no experiments,and should also be consistent with accurate force fields (either {\it ab initio}or empirical). We make significant progress toward jointly satisfying {\it both} of these criteria using a hybrid reverse Monte Carlo approach in conjunction with approximate first principles molecular dynamics. We illustrate the method by studying the complex binary glassy material g-GeSe2_2. By constraining the model to agree with partial structure factors and {\it ab initio} simulation, we obtain a 647-atom model in close agreement with experiment, including the first sharp diffraction peak in the static structure factor. We compute the electronic state densities and compare to photoelectron spectroscopies. The approach is general and flexible.Comment: 6 pages, 4 figure

    The EPICS Software Framework Moves from Controls to Physics

    No full text
    The Experimental Physics and Industrial Control System (EPICS), is an open-source software framework for high-performance distributed control, and is at the heart of many of the world’s large accelerators and telescopes. Recently, EPICS has undergone a major revision, with the aim of better computing supporting for the next generation of machines and analytical tools. Many new data types, such as matrices, tables, images, and statistical descriptions, plus users’ own data types, now supplement the simple scalar and waveform types of the former EPICS. New computational architectures for scientific computing have been added for high-performance data processing services and pipelining. Python and Java bindings have enabled powerful new user interfaces. The result has been that controls are now being integrated with modelling and simulation, machine learning, enterprise databases, and experiment DAQs. We introduce this new EPICS (version 7) from the perspective of accelerator physics and review early adoption cases in accelerators around the world

    Accuracy and reproducibility of coral Sr/Ca SIMS timeseries in modern and fossil corals

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sayani, H., Cobb, K., Monteleone, B., & Bridges, H. Accuracy and reproducibility of coral Sr/Ca SIMS timeseries in modern and fossil corals. Geochemistry, Geophysics, Geosystems, 23(9), (2022): e2021GC010068, https://doi.org/10.1029/2021gc010068.Coral strontium-to-calcium ratios (Sr/Ca) provide quantitative estimates of past sea surface temperatures (SST) that allow for the reconstruction of changes in the mean state and climate variations, such as the El Nino-Southern Oscillation, through time. However, coral Sr/Ca ratios are highly susceptible to diagenesis, which can impart artifacts of 1–2°C that are typically on par with the tropical climate signals of interest. Microscale sampling via Secondary Ion Mass Spectrometry (SIMS) for the sampling of primary skeletal material in altered fossil corals, providing much-needed checks on fossil coral Sr/Ca-based paleotemperature estimates. In this study, we employ a set modern and fossil corals from Palmyra Atoll, in the central tropical Pacific, to quantify the accuracy and reproducibility of SIMS Sr/Ca analyses relative to bulk Sr/Ca analyses. In three overlapping modern coral samples, we reproduce bulk Sr/Ca estimates within ±0.3% (1σ). We demonstrate high fidelity between 3-month smoothed SIMS coral Sr/Ca timeseries and SST (R = −0.5 to −0.8; p < 0.5). For lightly-altered sections of a young fossil coral from the early-20th century, SIMS Sr/Ca timeseries reproduce bulk Sr/Ca timeseries, in line with our results from modern corals. Across a moderately-altered section of the same fossil coral, where diagenesis yields bulk Sr/Ca estimates that are 0.6 mmol too high (roughly equivalent to −6°C artifacts in SST), SIMS Sr/Ca timeseries track instrumental SST timeseries. We conclude that 3–4 SIMS analyses per month of coral growth can provide a much-needed quantitative check on the accuracy of fossil coral Sr/Ca-derived estimates of paleotemperature, even in moderately altered samples.We'd also like to thank Yolande Berta and Georgia Tech's Center for Nanostructure Characterization for providing access to their SEM facilities, and the Khaled bin Sultan Living Ocean Foundation and The Nature Conservancy for financial and logistical support for field excursions to Palmyra. Funding for this work was provided by the National Science Foundation (Award Numbers 1502832 and 2002458 to K.M.C) and the National Oceanic and Atmospheric Administration (Award Number: NA11OAR4310165 to K.M.C)
    • …
    corecore