37 research outputs found

    A biogeochemical model for North and Northwest Iberia: some applications

    Get PDF
    The Coastal and Ocean modeling group at the Spanish Institute of Oceanography (IEO) has a broad experience in hydrodynamic modeling with ROMS in the area of West and North Iberia. Our main task consists of providing insight on the coastal and ocean dynamics in support to the intense IEO ecosystem and fisheries research in the area. The NW coast of Iberia is characterized by high levels of primary production that result from relatively frequent and intense inputs of nutrients caused by upwelling, especially in spring and summer. Primary production sustains wealthy fisheries and aquaculture industries, which constitute a prime economic activity in the region. As a first approach to understand the ecosystem variability in the area we focused on the spring bloom. A high resolution (~3 km) configuration of the ROMS physical model with atmospheric forcing coming from the regional agency Meteogalicia (http://www.meteogalicia.es), which has shown to represent the main features of the shelf and slope circulation in the area, was run coupled to the Fasham-type Fennel biogeochemical model (N2PZD2). Any biogeochemical model aimed at providing a reliable representation of the dynamics of a certain area should be tuned according to its characteristics. In an upwelling system, the composition of phytoplankton varies from the beginning to the end of the bloom. When nutrients and irradiance are high, diatoms are the dominant group, whereas flagellates become more important when upwelling relaxes and, consequently, nutrients and light intensity decrease. In the NW Iberian coast, it has been found that Chaetoceros socialis is the dominant diatom species during the spring bloom (Bode et al, 1996, 1998). For this reason, we have decided to use parameters that are characteristic of plankton at the spring bloom. In particular, the parameters of Chaetoceros socialis have been considered for the unique phytoplankton class of the model. We will show comparisons of the model results for 2006 and 2007 with observations at weekly and daily time scales (MODIS chlorophyll-a images, in situ observations from the “Instituto Español de OceanografĂ­a” Pelacus cruises). The spring bloom is reasonably reproduced in the NW and N coasts in time, space and intensity. The variability between the primary production in 2006 and 2007 can be related to the oceanographic conditions thanks to the use of a numerical model. The results are promising and encourage us to move forward to increase the complexity of our models and broaden their range of application. We will show some examples of the use of the IEO models to get some insight on sardine recruitment variability and harmful algal bloom prediction

    Modeling Iberian sardine Early Life Stages dynamics

    Get PDF
    The Iberian sardine (Sardina pilchardus) constitutes a traditional target species in western Iberia that remains to be economically important in Portugal and, to a lesser extent, in Galicia (NW Spain). The time series of recruitment shows ups and downs in the last decades. According to the ICES Advice 2013 for regions VIII and IXa, the biomass of age 1 sardine and older has decreased since 2006 and recruitment has been below the long term average since 2005. In order to understand these fluctuations, a Lagrangian model to simulate sardine Early Life Stages (ELS), this is, egg and larvae stages, has been set up. The results of a high resolution hydrodynamic model for North and Northwest Iberia have been used as an input of the Lagrangian model Ichthyop (Lett et al., (2008)) to simulate ELS advection and dispersion. Ichthyop has been adapted to sardine by including some biological behavior. A biogeochemical model coupled to the hydrodynamic model was also used to get some insight on recruitment for years 2006 2007

    Modelling the hydrodynamic conditions associated with Dinophysis blooms in Galicia (NW Spain)

    Get PDF
    The northwestern Iberian coast (Galician RĂ­as and shelf) is frequently affected by toxic harmful algal blooms (HABs) (mainly Dinophysis spp.), leading to lengthy harvesting closures in a region where aquaculture has a strong socioeconomic impact. The project ASIMUTH (http://www.asimuth.eu) aimed to develop forecasting capabilities to warn of impending HABs along the European Atlantic coast. Simulations with the ROMS model (hydrodynamical and ecological simulations complemented with Lagrangian particle tracking simulations) of the Galician coastal circulation have been performed in the framework of the ASIMUTH project to characterize and forecast oceanographic conditions before and during HAB periods. In this work, we present the Galician ASIMUTH forecast system and demonstrate its skill in predicting HAB transport and its usefulness to provide assessment for the management of the areas affected by toxic outbreaks. Experience gained during DSP events in 2005 and 2013 is shown. We also describe the Galician pilot HAB bulletins, aimed at distributing forecasts of HAB events that might induce closures of harvesting areas or, when the areas are already closed, at giving information on forthcoming oceanographic conditions that could favour or hamper the opening of an area. Our results show that the model forecasts and the bulletins can provide early warning of the risk of Dinophysis spp. events and the risk of closures linked to the presence of DSP toxins above regulatory levels in harvesting areas.VersiĂłn del editor3,083

    Numerical simulations with the ASIMUTH forecast system for understanding and forecasting HAB events in Galicia (NW Spain)

    Get PDF
    Simulations with the model ROMS (hydrodynamical and ecological simulations complemented with Lagrangian particle-tracking simulations) have been performed in the framework of the project ASIMUTH (http://www.asimuth.eu) which aims to develop forecasting capabilities to warn of impending harmful algal blooms (HABs) along the European Atlantic coast. In this contribution, we will report on the skill of the ASIMUTH forecast system in predicting transport of HABs and in assessing the area affected by HABs in the upwelling-influenced Galician rias (NW Spain) with the experience gained in years 2013 and 2014.ASIMUTH FP7/26186

    Towards a HAB forecast service in the Galician region

    Get PDF
    We will present the recent developments of our forecasting capabilities to warn of impending harmful algal blooms (HABs) in Galicia, where aquaculture has a strong socio-economic impact. A HAB warning service for monitoring agencies and the aquaculture industry has been developed as a demonstration of a Copernicus marine downstream service coupled to the MyOcean service. In this contribution, we describe the Galician ASIMUTH forecast system and demonstrate its skill in predicting HAB transport and its usefulness to provide assessment for the management of the areas affected by toxic outbreaks. We also describe the Galician pilot HAB bulletins, aimed at distributing forecasts of HAB events that might induce closures of harvesting areas or, when the areas are already closed, at giving information on forthcoming oceanographic conditions that could favour or hamper the opening of an area. Our results show that the model forecasts and the bulletins can provide early warning of the risk of Dinophysis spp. events and the risk of closures linked to the presence of toxins above regulatory levels in harvesting areas.Instituto Español de Oceanografí

    Net community production in the northwestern Mediterranean Sea from glider and buoy measurements

    Get PDF
    The Mediterranean Sea comprises just 0.8 % of the global oceanic surface, yet considering its size, it is regarded as a disproportionately large sink for anthropogenic carbon due to its physical and biogeochemical characteristics. An underwater glider mission was carried out in March–April 2016 close to the BOUSSOLE and DyFAMed time series moorings in the northwestern Mediterranean Sea. The glider deployment served as a test of a prototype ion-sensitive field-effect transistor pH sensor. Dissolved oxygen (O2) concentrations and optical backscatter were also observed by the glider and increased between 19 March and 1 April, along with pH. These changes indicated the start of a phytoplankton spring bloom, following a period of intense mixing. Concurrent measurements of CO2 fugacity and O2 concentrations at the BOUSSOLE mooring buoy showed fluctuations, in qualitative agreement with the pattern of glider measurements. Mean net community production rates (N) were estimated from glider and buoy measurements of dissolved O2 and inorganic carbon (DIC) concentrations, based on their mass budgets. Glider and buoy DIC concentrations were derived from a salinity-based total alkalinity parameterisation, glider pH and buoy CO2 fugacity. The spatial coverage of glider data allowed the calculation of advective O2 and DIC fluxes. Mean N estimates for the euphotic zone between 10 March and 3 April were (-17±36) for glider O2, (44±94) for glider DIC, (17±37) for buoy O2 and (49±86)  mmolm-2d-1 for buoy DIC, all indicating net metabolic balance over these 25 d. However, these 25 d were actually split into a period of net DIC increase and O2 decrease between 10 and 19 March and a period of net DIC decrease and O2 increase between 19 March and 3 April. The latter period is interpreted as the onset of the spring bloom. The regression coefficients between O2 and DIC-based N estimates were 0.25 ± 0.08 for the glider data and 0.54 ± 0.06 for the buoy, significantly lower than the canonical metabolic quotient of 1.45±0.15. This study shows the added value of co-locating a profiling glider with moored time series buoys, but also demonstrates the difficulty in estimating N, and the limitations in achievable precision

    Air-sea gas fluxes and remineralization from a novel combination of pH and O2 sensors on a glider

    Get PDF
    Accurate, low-power sensors are needed to characterize biogeochemical variability on underwater glider missions. However, the needs for high accuracy and low power consumption can be difficult to achieve together. To overcome this difficulty, we integrated a novel sensor combination into a Seaglider, comprising a spectrophotometric lab-on-a-chip (LoC) pH sensor and a potentiometric pH sensor, in addition to the standard oxygen (O 2) optode. The stable, but less frequent (every 10 min) LoC data were used to calibrate the high-resolution (1 s) potentiometric sensor measurements. The glider was deployed for a 10-day pilot mission in August 2019. This represented the first such deployment of either type of pH sensor on a glider. The LoC pH had a mean offset of +0.005±0.008 with respect to pH calculated from total dissolved inorganic carbon content, c(DIC), and total alkalinity, A T, in co-located water samples. The potentiometric sensor required a thermal-lag correction to resolve the pH variations in the steep thermocline between surface and bottom mixed layers, in addition to scale calibration. Using the glider pH data and a regional parameterization of A T as a function of salinity, we derived the dissolved CO 2 content and glider c(DIC). Glider surface CO 2 and O 2 contents were used to derive air-sea fluxes, Ί(CO 2) and Ί(O 2). Ί(CO 2) was mostly directed into the ocean with a median of −0.4 mmol m –2 d –1. In contrast, Ί(O 2) was always out of the ocean with a median of +40 mmol m –2 d –1. Bottom water apparent oxygen utilization (AOU) was (35±1) ÎŒmol kg –1, whereas apparent carbon production (ACP) was (11±1) ÎŒmol kg –1, with mostly insignificant differences along the deployment transect. This deployment shows the potential of using pH sensors on autonomous observing platforms such as Seagliders to quantify the interactions between biogeochemical processes and the marine carbonate system at high spatiotemporal resolution
    corecore