393 research outputs found

    Removal of Di-(2-ethylhexyl)phthalate (DEHP) from water using a LECA-Pseudomonas putida Biobarrier

    Get PDF
    The removal and biodegradation of an organic toxic pollutant, di-(2-ethylhexyl) phthalate (DEHP), has been investigated. Initially, a screening of different degrading bacteria has been developed and Pseudomonas putida showed the highest degradation ability. This bacterium was immobilised in an inert support, light expanded clay aggregate (LECA). After the biofilm formation on the LECA, the degradation of DEHP was evaluated operating in a fixed bed reactor. In addition, several studies of DEHP adsorption on LECA were carried out in order to determine the mechanism of the degradation process that takes place. The degradation studies demonstrated that the developed system can be applied to DEHP removal and the degradation is due to adsorption process and the activity of P. putida

    Optimization of the properties of poplar and willow chemimechanical pulps by a mixture design of juvenile and mature wood

    Get PDF
    Forest plantations of Salicaceae (poplars and willows) in Argentina are mainly used for the manufacture of pulp for newsprint. The rapid growth of these species results in a decrease in rotation age, which increases the proportion of juvenile wood. The aim of this work was to define the proportions of juvenile wood (JW) and mature wood (MW) of these species that can optimize the mechanical and optical properties of chemimechanical pulps for newsprint production. A two-component mixture type experimental design was used with proportions (JW:MW) of 0:100%, 25:75%, 50:50%, 75:25%, and 100:0%. When the mechanical properties were optimized, the highest desirability function was obtained with a JW:MW ratio of 100:0%, and the optimal ratio for optical properties was 0:100%. The pattern of variation of mechanical properties can be attributed to the higher density of MW, whilst that of the optical properties can be attributed to the higher content of extractives in the JW.Facultad de Ciencias Agrarias y Forestale

    Theoretical and Experimental Studies of Schottky Diodes That Use Aligned Arrays of Single Walled Carbon Nanotubes

    Get PDF
    We present theoretical and experimental studies of Schottky diodes that use aligned arrays of single walled carbon nanotubes. A simple physical model, taking into account the basic physics of current rectification, can adequately describe the single-tube and array devices. We show that for as grown array diodes, the rectification ratio, defined by the maximum-to-minimum-current-ratio, is low due to the presence of m-SWNT shunts. These tubes can be eliminated in a single voltage sweep resulting in a high rectification array device. Further analysis also shows that the channel resistance, and not the intrinsic nanotube diode properties, limits the rectification in devices with channel length up to ten micrometer.Comment: Nano Research, 2010, accepte
    corecore