2,379 research outputs found

    Bilateral Differences in Vascular Stiffness and Blood Pressure of Female College Tennis Players and Controls

    Get PDF
    Vascular stiffness is highly correlated to cardiovascular disease (CVD) and has been attenuated by regular aerobic exercise in older adults. Additionally, body composition strongly predicts vascular stiffness and CVD risk. Previous research has documented that bilateral differences in shear stress lead to differences in vascular endothelial function in tennis players. However, whether this translates into bilateral differences in vascular stiffness and blood pressure remains to be elucidated. The SphygmoCor is a gold standard for assessing arterial stiffness but is not readily accessible. In comparison, the TicWatch GTH Pro, which uses the SphygmoCor algorithm to provide a cardiovascular health (CVH) score (ARTY score), could be a feasible way to monitor CVH, but its accuracy is unknown. PURPOSE: This study aimed to evaluate bilateral differences in vascular stiffness and blood pressure in Division III female college tennis players and recreationally active female students. A secondary aim was to determine if the TicWatch GTH Pro ARTY score relates to SphygmoCor outcomes. METHODS: Subjects from the Skidmore women’s tennis team (n=10) and recreationally active female students (n=10) underwent a single testing session where anthropometrics, body composition, bilateral cardiovascular measurements, and a TicWatch analysis were performed. RESULTS: There were no significant differences in weight, body fat percentage, or BMI between the two groups (p=0.96; p=0.83; p=0.69). Augmentation pressure and augmentation index were different between the dominant and non-dominant arms (p=0.02; p=0.02), but no interactions of the group by arm were observed (all, p\u3e0.05). In addition, the TicWatch ARTY score related significantly with brachial diastolic pressure, mean arterial pressure, and central diastolic pressure (r²= -0.52; r²= -0.50; r²= -0.56). CONCLUSION: In groups well-matched for age and body composition, two indices of vascular stiffness significantly differed between the arms, but this did not appear specific to this cohort of tennis players. The results also indicate that the TicWatch is an accurate device for assessing CVH indicators and may predict brachial diastolic pressure, central diastolic pressure, and mean arterial pressure

    Factors Influencing Common Raven Occurrence and Density Across Cold-Desert Sagebrush Ecosystems of the Southwestern U.S.

    Get PDF
    Common ravens (Corvus corax) are a predator of eggs and chicks of numerous species including greater sage-grouse (Centrocercus urophasianus). Raven abundance and distribution is increasing within sagebrush ecosystems as a result of anthropogenic resource subsidies. Despite concerns about subsequent predation pressure on sage-grouse, broad-scale spatial information about raven populations remains lacking. We used hierarchical occupancy and distance sampling models to map raven density and distribution in response to natural and anthropogenic landscape covariates using \u3e15,000 point count surveys occurring within the Great Basin region since 2007. Anthropogenic factors contributing to greater raven occurrence included increased road density, presence of transmission lines, agricultural activity, and presence of roadside rest areas. Natural landscape characteristics included lower elevations with greener vegetation (NDVI), greater stream and habitat edge densities, and lower percentages of big sagebrush (A. tridentate spp.). Many of these same environmental factors influenced spatial variation in raven density, although the effects varied by field site. Both raven occurrence and density tended to increase in valleys with networks of agricultural fields, ranches, roads, and distribution lines. These features likely subsidize local raven populations, which then move into more remote shrubland environments with negative consequences for sage-grouse populations. We used the relationships identified in our model to make predictions of raven density and distribution across the Great Basin landscape. We show how these model outputs can be used to guide management decisions where raven distributions overlap with breeding sage-grouse concentration areas. Findings are preliminary and provided for timely best science

    The Evolution and Development of Coloniality in Hydrozoans

    Get PDF
    Hydrozoan colonies display a variety of shapes and sizes including encrusting, upright and pelagic forms. Phylogenetic patterns reveal a complex evolutionary history of these distinct colony forms, as well as colony loss. Within a species, phenotypic variation in colonies as a response to changing environmental cues and resources has been documented. The patterns of branching of colony specific tissue, called stolons in encrusting colonies and stalks in upright colonies, are likely under the control of signaling mechanisms whose changing expression in evolution and development are responsible for the diversity of hydrozoan colony forms. Although mechanisms of polyp development have been well studied, little research has focused on colony development and patterning. In the few studies that investigated mechanisms governing colony patterning, the Wnt signaling pathway has been implicated. The diversity of colony form, evolutionary patterns and mechanisms of colony variation in Hydrozoa are reviewed here

    Effects of Common Ravens on Greater Sage-Grouse in the Great Basin, Region, USA

    Get PDF
    Anthropogenic modification to ecosystems can result in the redistribution of species at higher trophic levels. Humans have re-organized predator-prey dynamics, namely by removing top predators and subsidizing more generalist mesocarnivore species. As a result, some mid-level predator species have increased in abundance and distribution, often to the detriment of lower-level species that are not adapted to increased predation rates. One example of a native avian predator that has experienced population increase following increased anthropogenic subsidization is the common raven (Corvus corax; hereafter, raven).The raven is an ubiquitous predator within sagebrush ecosystems in the western U.S.,and may contribute to suppressed population growth in greater sage-grouse (Centrocercus urophasianus) through disruptions to lekking behavior and top-down influences on nest success and recruitment. Ravens have expanded in distribution and abundance, in large part due to increased resource subsidies from human infrastructure and land use activities. Concurrently, some sage-grouse populations appear to be in decline where habitat conditions should be promoting species persistence. Using long-term monitoring data on sage-grouse and ravens in the northern Great Basin region, we show that ravens disrupt sage-grouse lekking behavior, increased raven density is associated with reduced sage-grouse nest success, and that negative trends in lek counts may be related to elevated raven occurrence and density. Taken together, these results suggest the need to address a growing problem, as ravens continue to expand their distribution, facilitated by anthropogenic subsidies. These findings are preliminary and provided to meet the need for timely best science

    Declaration of Principles & Aims

    Get PDF
    Report by special Kentucky Educational Association committee charged to draft a Declaration of Principles or a statement of the aims and purposes of the educational forces of the State of Kentucky. The report was adopted unanimously at the annual meeting of KEA.https://digitalcommons.wku.edu/exhibit_2015/1015/thumbnail.jp

    UA3/1/4 Declaration of Principles & Aims

    Get PDF
    Report by special Kentucky Educational Association committee charged to draft a Declaration of Principles or a statement of the aims and purposes of the educational forces of the State of Kentucky. The report was adopted unanimously at the annual meeting of KEA

    A Rapid Assessment Function to Estimate Common Raven Population Densities: Implications for Targeted Management

    Get PDF
    Common raven (Corvus corax; raven) populations have increased over the past 5 decades within the western United States. Raven population increases have been largely attributed to growing resource subsidies from expansion of human enterprise. Concomitantly, managers are becoming increasingly concerned about elevated adverse effects on multiple sensitive prey species, damage to livestock and agriculture, and human safety. Managers could benefit from a rapid but reliable method to estimate raven densities across spatiotemporal scales to monitor raven populations more efficiently and inform targeted and adaptive management frameworks. However, obtaining estimates of raven density is data- and resource-intensive, which renders monitoring within an adaptive framework unrealistic. To address this need, we developed a rapid survey protocol for resource managers to estimate site-level density based on the average number of ravens per survey. Specifically, we first estimated raven densities at numerous field sites with robust distance sampling procedures and then used regression to investigate the relationship between those density estimates and the number of ravens per survey, which revealed a strong correlation (R2 = 0.86). For management application, we provide access to R function software through a web-based interface to estimate density using number of ravens per survey, which we refer to as a Rapid Assessment Function (RAF). Then, using a simulation analysis of data from sites with abundant surveys and the RAF, we estimated raven density based on different numbers of surveys to help inform how many surveys are needed to achieve reliable estimates within this rapid assessment. While more robust procedures of distance sampling are the preferred methods for estimating raven densities from count surveys, the RAF tool presented herein provides a reliable approximation for informing management decisions when managers are faced with resource and small sample size constraints

    Spatial Modeling of Common Raven Density and Occurrence Helps Guide Landscape Management Within Great Basin Sagebrush Ecosystems

    Get PDF
    Common ravens (Corvus corax; ravens) are a behaviorally flexible nest predator of several avian species, including species of conservation concern. Movement patterns based on life history phases, particularly territoriality of breeding birds and transiency of nonbreeding birds, are thought to influence the frequency and efficacy of nest predation. As such, predicting where on the landscape territorial resident and non-territorial transient birds may be found in relation to the distribution of sensitive prey is of increasing importance to managers and conservationists. From 2007 to 2019, we conducted raven point count surveys between mid-March and mid-September across 43 different field sites representing typical sagebrush (Artemisia spp.) ecosystems of the Great Basin, USA. The surveys conducted during 2007–2016 were used in previously published maps of raven occurrence and density. Here, we examined the relationship between occurrence and density of ravens using spatially explicit predictions from 2 previously published studies and differentiate areas occupied by higher concentrations of resident ravens as opposed to transients. Surveys conducted during 2017–2019 were subsequently used to evaluate the predicted trends from our analytical approach. Specifically, we used residuals from a generalized linear regression to establish the relationship between occurrence and density, which ultimately resulted in a spatially explicit categorical map that identifies areas of resident versus transient ravens. We evaluated mapped categories using independently collected observed raven group sizes from the 2017–2019 survey data, as well as an independent dataset of global positioning system locations of resident and transient individuals monitored during 2019–2020. We observed moderate agreement between the mapped categories and independent datasets for both evaluation approaches. Our map provides broad inference about spatial variation in potential predation risk from ravens for species such as greater sage-grouse (Centrocercus urophasianus) and can be used as a valuable spatial layer for decision support tools aimed at guiding raven management decisions and, ultimately, improving survival and reproduction of sensitive prey within the Great Basin

    Soybean aphid biotype 1 genome: Insights into the invasive biology and adaptive evolution of a major agricultural pest

    Get PDF
    The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae) is a serious pest of the soybean plant, Glycine max, a major world-wide agricultural crop. We assembled a de novo genome sequence of Ap. glycines Biotype 1, from a culture established shortly after this species invaded North America. 20.4% of the Ap. glycines proteome is duplicated. These in-paralogs are enriched with Gene Ontology (GO) categories mostly related to apoptosis, a possible adaptation to plant chemistry and other environmental stressors. Approximately one-third of these genes show parallel duplication in other aphids. But Ap. gossypii, its closest related species, has the lowest number of these duplicated genes. An Illumina GoldenGate assay of 2380 SNPs was used to determine the world-wide population structure of Ap. Glycines. China and South Korean aphids are the closest to those in North America. China is the likely origin of other Asian aphid populations. The most distantly related aphids to those in North America are from Australia. The diversity of Ap. glycines in North America has decreased over time since its arrival. The genetic diversity of Ap. glycines North American population sampled shortly after its first detection in 2001 up to 2012 does not appear to correlate with geography. However, aphids collected on soybean Rag experimental varieties in Minnesota (MN), Iowa (IA), and Wisconsin (WI), closer to high density Rhamnus cathartica stands, appear to have higher capacity to colonize resistant soybean plants than aphids sampled in Ohio (OH), North Dakota (ND), and South Dakota (SD). Samples from the former states have SNP alleles with high FST values and frequencies, that overlap with genes involved in iron metabolism, a crucial metabolic pathway that may be affected by the Rag-associated soybean plant response. The Ap. glycines Biotype 1 genome will provide needed information for future analyses of mechanisms of aphid virulence and pesticide resistance as well as facilitate comparative analyses between aphids with differing natural history and host plant range

    Lack of correlation of stem cell markers in breast cancer stem cells

    Get PDF
    BACKGROUND: Various markers are used to identify the unique sub-population of breast cancer cells with stem cell properties. Whether these markers are expressed in all breast cancers, identify the same population of cells, or equate to therapeutic response is controversial. METHODS: We investigated the expression of multiple cancer stem cell markers in human breast cancer samples and cell lines in vitro and in vivo, comparing across and within samples and relating expression with growth and therapeutic response to doxorubicin, docetaxol and radiotherapy. RESULTS: CD24, CD44, ALDH and SOX2 expression, the ability to form mammospheres and side-population cells are variably present in human cancers and cell lines. Each marker identifies a unique rather than common population of cancer cells. In vivo, cells expressing these markers are not specifically localized to the presumptive stem cell niche at the tumour/stroma interface. Repeated therapy does not consistently enrich cells expressing these markers, although ER-negative cells accumulate. CONCLUSIONS: Commonly employed methods identify different cancer cell sub-populations with no consistent therapeutic implications, rather than a single population of cells. The relationships of breast cancer stem cells to clinical parameters will require identification of specific markers or panels for the individual cancer
    • …
    corecore