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Abstract: Common raven (Corvus corax; raven) populations have increased over the past 
5 decades within the western United States. Raven population increases have been largely 
attributed to growing resource subsidies from expansion of human enterprise. Concomitantly, 
managers are becoming increasingly concerned about elevated adverse effects on multiple 
sensitive prey species, damage to livestock and agriculture, and human safety. Managers 
could benefit from a rapid but reliable method to estimate raven densities across spatiotempo-
ral scales to monitor raven populations more efficiently and inform targeted and adaptive man-
agement frameworks. However, obtaining estimates of raven density is data- and resource-
intensive, which renders monitoring within an adaptive framework unrealistic. To address this 
need, we developed a rapid survey protocol for resource managers to estimate site-level 
density based on the average number of ravens per survey. Specifically, we first estimated ra-
ven densities at numerous field sites with robust distance sampling procedures and then used 
regression to investigate the relationship between those density estimates and the number 
of ravens per survey, which revealed a strong correlation (R2 = 0.86). For management ap-
plication, we provide access to R function software through a web-based interface to estimate 
density using number of ravens per survey, which we refer to as a Rapid Assessment Function 
(RAF). Then, using a simulation analysis of data from sites with abundant surveys and the 
RAF, we estimated raven density based on different numbers of surveys to help inform how 
many surveys are needed to achieve reliable estimates within this rapid assessment. While 
more robust procedures of distance sampling are the preferred methods for estimating raven 
densities from count surveys, the RAF tool presented herein provides a reliable approxima-
tion for informing management decisions when managers are faced with resource and small 
sample size constraints.
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Common ravens (Corvus corax; ravens) are 
native to North America (Boarman and Hein-
rich 1999). However, since the mid-twentieth 
century, raven abundance has increased con-
siderably (Sauer et al. 2017), and populations 
have expanded into previously unoccupied 
areas. Recent modeling of Breeding Bird Sur-

vey data (Sauer et al. 2017) revealed substantial 
population growth across nearly all ecoregions 
within the United States and Canada over the 
course of 53 years (Harju et al. 2021). Most no-
tably, within the Cold Desert ecoregion, which 
includes the Great Basin, abundances of ravens 
were predicted to be the highest in relative 
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abundance and exhibited increases of ~460% 
(Harju et al. 2021). Other areas also experienced 
substantial increases in abundance, which in-
cluded Mediterranean California and Warm 
Deserts of the southwestern United States. This 
expansion is commonly occurring on land-
scapes with increasing human-related resource 
subsidies (e.g., foraging resources and roosting 
and nesting structures; Kristan et al. 2004, Boar-
man et al. 2006, Leu et al. 2008, Bui et al. 2010, 
Howe et al. 2014), which provide ravens with 
resources that have led to elevated survival and 
reproduction rates. 

Studies have documented negative effects on 
sensitive prey species where increasing abun-
dances of ravens have been observed (for re-
view of avian species, see Coates et al. 2021). Of 
specific concern, effects have been documented 
for greater sage-grouse (Centrocercus uropha-
sianus; sage-grouse; Bui et al. 2010, Coates and 
Delehanty 2010, Dinkins et al. 2016, Peebles et 
al. 2017; Figure 1), snowy plovers (Charadrius 
nivosus; Page et al. 2009, Peterson and Col-
well 2014, Lau et al. 2021), and Mojave Desert 
tortoises (Gopherus agassizii; Boarman 2003, 
Kristan and Boarman 2003, Tracy et al. 2004, 
Holcomb et al. 2021). This body of evidence has 
substantiated concerns that growing popula-
tions of ravens pose a threat to species already 
challenged by habitat loss, changing climates, 
disease, and other pervasive threats. Further-
more, increasing numbers of ravens associated 
with human enterprise and expansion into re-
mote environments may present challenges re-
lated to human health and safety as well as eco-

nomic losses (Merrell 2012). For example, large 
numbers of undeterred perching and nesting 
ravens on transmission lines have been report-
ed to cause electrical faults (Restani and Lueck 
2020), which are interruptions of power that 
sometimes lead to outages (Short 2005). Ravens 
have also been reported to damage newborn or 
young livestock (Larsen and Dietrich 1970). 

Despite the reported ecological and societal 
effects of subsidized and growing populations 
of ravens, management actions aimed at revers-
ing these effects are challenging, largely because 
relatively few studies have offered tools to moni-
tor raven populations and help guide when and 
where management solutions could be most 
beneficial (Boarman 2003, Boarman et al. 2006, 
Peebles et al. 2017). One major issue facing re-
source managers is the time and effort needed 
to sufficiently survey ravens, to estimate densi-
ties accurately, and to track population changes 
through time, which is imperative to an adap-
tive management strategy (Dettenmaier et al. 
2021). Importantly, current raven densities alone 
do not provide insight into whether raven den-
sities are at levels considered problematic. In 
fact, thresholds for implementing management 
may vary depending on overlap with sensitive 
species or human enterprises that are affected 
by increases in ravens. For example, Coates et 
al. (2020a) found raven abundance >0.4 ravens 
km-2 to be associated with below average sage-
grouse nest success in the Great Basin, while in 
the Mojave Desert, where ravens are relatively 
more abundant, a greater value was identified as 
a conflict threshold for impacting juvenile desert 
tortoises (Holcomb et al. 2021). Thus, estimating 
local level population densities of ravens could 
be an effective first step to evaluate whether con-
flict thresholds have been reached or exceeded 
and inform management actions. 

Surveys following management actions are 
typically needed to assess efficacy of manage-
ment efforts. However, resource managers of-
ten lack resources to obtain adequate numbers 
of surveys to inform robust analyses using 
distance sampling that facilitate estimation of 
“true” abundance. For example, 60 individual 
observations are recommended as the mini-
mum number necessary to estimate a detection 
function based on distances of ravens from the 
observer (Buckland et al. 2001, Kéry and Royle 
2015). A consequence of this is that a relatively 

Figure 1. Evidence of common raven (Corvus corax) 
depredating eggs captured from video-monitoring 
project of greater sage-grouse (Centrocercus uropha-
sianus) nests in the Great Basin, USA. 
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to number of surveys to help guide managers 
on the effort required to approximate raven 
density estimates. While this rapid survey and 
RAF tool cannot substitute for more rigorous 
study designs using distance-based sampling, 
it can provide managers with information re-
garding raven density that can be employed in 
an adaptive management framework. 

Study area
We collected raven point-count data from 

defined field study site units throughout the 
northern Great Basin sagebrush-steppe (Arte-
misia spp.) ecosystem of Idaho, Nevada, and 
portions of Oregon and California, USA (see 
O’Neil et al. 2018, Coates et al. 2020a; Figure 
2). The data used to implement a rapid survey 
index were previously used to predict raven 
density and its influence on sage-grouse nest 
success across this study region (Coates et al. 
2020b). A detailed description of the study area 
can be found in Coates et al. (2020a).

Methods
Data collection

A detailed raven survey protocol is provid-
ed in the supplemental material (Appendix 
A). Briefly, we conducted 30,457 raven survey 
point-counts from 2007–2019 at 50 field sites 
distributed across the study area, covering Ne-
vada, Idaho, the eastern Sierra Nevada of Cali-
fornia, and eastern Oregon (Appendix B). Field 
sites averaged 1391.7 km2 (range: 42.8–4,739.1 
km2; Figure 2). Survey locations occurred 
within field sites that generally aligned with 
long-term studies of sage-grouse populations 
and were conducted entirely within sagebrush 
ecosystems. Within field sites, raven surveys 
were conducted at random locations as well 
as at sage-grouse telemetry locations corre-
sponding to nesting, brood-rearing, and adult 
locations. We completed most of the surveys 
between April and August (~95%). Thus, these 
data also coincided with the reproductive pe-
riod for sage-grouse as well as numerous other 
wildlife species, when predation by ravens may 
have the most effect (Bui et al. 2010). Within 2 
field sites (Idaho National Lab within Idaho, 
and Oregon), survey locations for ravens were 
revisited intra- and inter-annually. At all other 
field sites, raven survey locations were not du-
plicated within or across years. Field sites var-

large number of surveys is generally required, 
especially if densities and/or detection prob-
abilities are relatively low, as more surveys 
are needed to obtain this minimum number 
of observations. Furthermore, sites may war-
rant repeated sampling across years to achieve 
comparable results, as both detectability and 
abundance vary spatiotemporally (Buckland 
et al. 2001, Marques et al. 2007). Although ro-
bust and intensive study designs that adhere 
to sample size recommendations for modeling 
populations of unmarked individuals should 
be pursued, it is rarely possible to meet these 
criteria while monitoring effectiveness of all 
management actions at the scale and frequency 
needed to guide decision-making within an 
adaptive management framework. However, 
this limitation should not discourage all forms 
of monitoring that can have management util-
ity. Understanding and monitoring local rela-
tive raven abundances may still be achieved 
with relatively small sample sizes of field data. 

Our primary goal was to establish a rapid, yet 
reliable, survey protocol and estimation tool, re-
ferred to here as a Rapid Assessment Function 
(RAF), to estimate density with data that may 
be inadequate for robust modeling frameworks 
such as distance sampling analyses. Secondly, 
we sought to provide guidance regarding the 
number of surveys necessary to obtain stable 
results of estimates from the RAF. To accom-
plish this, we first relied on existing survey data 
to estimate raven density at numerous study 
sites within sagebrush ecosystems of the Great 
Basin region of the western United States using 
hierarchical distance sampling models that ac-
count for detection. We then established a rela-
tionship between site-level densities estimated 
from distance sampling methods and a simple 
raven index (no. ravens/no. surveys) to approx-
imate modeled raven density (i.e., estimates ob-
tained from distance sampling methods) at de-
fined field units (averaging ~1,400 km2). Third, 
we developed an R function, R package (Roth 
et al. 2021a), and web-based software (available 
at  https://rconnect.usgs.gov/smart/; Roth et al. 
2021b) for managers to input the index value 
and calculate RAF estimates of density with 
uncertainty from prediction intervals given the 
modeled relationship established in our second 
objective. And last, we used an iterative sam-
pling process to test the sensitivity of the RAF 
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scanned the 360° viewscape for 10 minutes us-
ing binoculars and unaided eyes and recorded 
all ravens they observed. For each observa-
tion of a raven or group of ravens, the time, 
distance, and bearing were recorded using a 
digital rangefinder, handheld global position 
system device (Garmin; Garmin International 
Inc., Olathe, Kansas, USA), and compass, re-
spectively. Observations likely included both 
breeding and non-breeding ravens (Bui et al. 
2010, Coates et al. 2016). 

ied in size and proximity to anthropogenic fea-
tures and included sites monitored in Coates et 
al. (2020a) as well as sites added in more recent 
years (Appendices B and C). Approximately 
56% of the survey data in this study were pre-
viously analyzed in Coates et al. (2020a). Each 
individual field site was surveyed at least once 
during the study. The number of surveys con-
ducted at each field site and year averaged 232 
and ranged from 16–770 (Appendix C).

At each survey point, surveyors visually 

Figure 2. Map of field site units where common raven (Corvus corax) surveys were 
conducted across sagebrush (Artemisia spp.) ecosystems within the Great Basin region, 
USA, 2007–2019. Basemap is the U.S. Geological Survey (USGS) Digital Elevation Model 
(USGS 2009). 



   5Rapid raven assessment • Brussee et al.

Data analysis
We used hierarchical distance sampling 

(Buckland et al. 2001, Thomas et al. 2010) to ob-
tain estimates of raven density within sage-
grouse habitat across field site units and years 
using point-count data (Coates et al. 2020a). 
Conventional distance sampling corrects for 
the probability of detecting an individual or 
group based on its distance to an observer 
(Buckland et al. 2001). When enough observa-
tions are obtained within a defined area (~60 or 
more; Buckland et al. 2001), a distance detection 
function adjusts for imperfect detection at in-
creasing sampling distance (e.g., failure to ob-
serve birds that are present) and reliable esti-
mates of density can be inferred from the 
counts. The inclusion of detection covariates, 
with respect to the scale parameter in either a 
half-normal or hazard rate detection function, 
can improve estimates by quantifying factors 
that influence detection and thereby improve 
the accuracy of the detection function (Marques 
et al. 2007). For our analyses, we estimated the 
detection function 𝑔𝑔𝑔𝑔� [r, z] for point-count data, 
where the probability of detecting ≥1 raven is 
conditional on distance (r) from the center of a 
survey point as well as the vector of possible 
covariates z (Buckland et al. 2001, Marques et 
al. 2007, Rivera-Milán et al. 2015). 

Distance model. We used the “unmarked” 
package (Fiske and Chandler 2011) in R 3.5.0 
(R Development Core Team 2018) to estimate 
raven density for each field site and year com-
bination using generalized distance sampling 
models for point-count survey data (Royle et 
al. 2004, Sillett et al. 2012). We followed meth-
ods in Coates et al. (2020a), where observations 
of ravens were truncated at 1.125 km, beyond 
which probability of detection was <0.1 (Buck-
land et al. 2001, Burnham et al. 2004), and dis-
tances were binned into 5 equal distance classes 
(Sillett et al. 2012, Kéry and Royle 2015, Coates 
et al. 2020a). We specified a half-normal dis-
tance detection function to evaluate the effect 
of distance on detection probability (Thomas et 
al. 2010, Fiske and Chandler 2011). When esti-
mating the detection function parameters, we 
pooled surveys with those of neighboring field 
sites under rare occasions where too few obser-
vations were present to reliably estimate a de-
tection function (Appendices B and C; Coates et 
al. 2020a). We fit area of viewshed and percent 

of forested covariates on the detection func-
tion, quantified as zonal means within the ef-
fective truncation distance (radius = 1.125 km). 
We modeled density using a negative binomial 
distribution. We specified field site and year as 
covariate effects influencing abundance (Royle 
et al. 2004, Sillett et al. 2012) to derive densities 
for each field site and year combination (Sillett 
et al. 2012, Kéry and Royle 2015). We include 
a histogram of raw binned distances across all 
site-years, as well as detection curves for each 
site-year (Appendix Figure C.1). Each field 
site-year distance sampling estimate of density 
(hereafter, D) was then assumed to represent its 
“true” value for the purpose of evaluating an 
index that could potentially approximate these 
densities under less rigorous sampling designs.

Raven density index for rapid assessment. We ex-
plored the use of a RAF to approximate modeled 
raven densities under circumstances where the 
number of surveys carried out at a specific study 
area would not meet sample size requirements 
for conventional distance sampling. Specifical-
ly, by leveraging information from the model-
ing efforts that were previously completed, for 
each site-year combination, we computed the 
ratio of total number of ravens observed to to-
tal number of point-count surveys performed 
(i.e., raven index) for a site-year and related this 
to the corresponding raven density estimate 
obtained from hierarchical distance sampling. 
We applied a simple linear regression model 
where the response variable was the log-trans-
formed raven density estimate and the predictor 
variable was the log-transformed raven index  
(n ravens observedsite-year / n surveyssite-year). Log-
transformations were performed to account for 
heteroskedasticity in the modeled relationship 
(variance increases as counts increase). We mea-
sured the ability of the raven index to explain D 
at each field site by calculating R2. We report the 
coefficients from this model, which were used 
to develop the RAF, along with an associated 
R function (v 3.5.0; R Development Core Team 
2018; Appendix D), which obtains predictions 
of raven density ±95% prediction interval (RAF 
density). We implemented prediction intervals 
to capture the possible range of future measure-
ments. While distance sampling methods are 
preferred for estimating raven density when 
survey sample sizes are adequate, we reasoned 
that this function and its associated index could 
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To explore relationships between 𝐷𝐷𝐷𝐷�  and 
number of surveys (ns), for each site-year with 
>300 surveys (Appendix C), we calculated 𝐷𝐷𝐷𝐷�  us-
ing the RAF (Appendix D) and iteratively sub-
sampled from the surveys within a given site,
using successively fewer and fewer samples
(Marques et al. 2007, Buckland et al. 2016). First, 
we randomly sampled from the site-year sur-
vey data (nsub = n, n-1, n-2, … , n-n+1). Second,
within each subset, we randomly sampled the
raven counts with replacement to represent the
variation in counts occurring within the subset.
We drew 10,000 bootstrap samples to generate
the standard error and 95% confidence inter-
vals around 𝐷𝐷𝐷𝐷�  for each subsample. For each
site-year, we also calculated density using the
RAF with all survey data (𝐷𝐷𝐷𝐷� FULL). For each sub-
sample, we then calculated the log-transformed
ratio of 𝐷𝐷𝐷𝐷�  to 𝐷𝐷𝐷𝐷� FULL. Additionally, we calculated
the absolute difference of 𝐷𝐷𝐷𝐷�  from 𝐷𝐷𝐷𝐷� FULL for each
subsample and averaged across all site-years to
obtain an average absolute error for each ns.

By subsampling survey data, we calculated er-
ror in RAF estimates as deviation in estimates 
using subsampled survey data from those using 
the complete data from each site (𝐷𝐷𝐷𝐷�  minus 𝐷𝐷𝐷𝐷� FULL). 
Using a linear model, we then estimated the rela-
tionship between error in RAF estimates with 
number of surveys and 𝐷𝐷𝐷𝐷� . Positive values of er-
ror reflect overestimation of density, whereas 
negative values reflect underestimation of den-
sity with respect to 𝐷𝐷𝐷𝐷� FULL. We considered both 
additive effects and interactive effects of 𝐷𝐷𝐷𝐷�  and 
ns on error. Models were carried out using  
R 3.5.0 (R Development Core Team 2018), and 
best model was chosen using Akaike informa-

provide a method of approximation at study 
sites subject to small sample size constraints 
that are geographically similar to the sites used 
to generate the index.

Sensitivity to number of surveys. While a mini-
mum of ~60 detections has been recommended 
for estimating the distance-detection function 
from distance sampling models (Buckland et al. 
2001), little guidance exists for determining the 
minimum number of surveys needed to provide 
reliable estimates of density (D), particularly 
when surveys are stratified across multiple sites 
and years. With nearly 30,000 surveys overall, 
we tested the sensitivity to sample size across all 
our site-years with >300 point-counts (n = 39). 
We chose 300 surveys because this ensured we 
had the recommended number of observations 
for distance sampling (i.e., 60 observations; 
Buckland et al. 2001), even at sites with low den-
sities. Because we sought to evaluate the esti-
mates of density from the RAF as proxy for dis-
tance-based density estimates, we assumed that 
any given estimate from the RAF was unbiased. 
However, at a very small number of surveys, 
many birds go undetected, which could result in 
a predominance of zero-counts at low numbers 
of surveys, particularly for low-density sites. 
This could result in negative bias in density esti-
mates for sites with low numbers of surveys. 
Thus, we sought to explore bias at very low sam-
ple numbers and estimate how many surveys 
were necessary for uncertainty to stabilize by 
evaluating asymptotic behavior in the uncertain-
ty around predicted density (𝐷𝐷𝐷𝐷� ; standard error 
and 95% confidence intervals) corresponding 
with numbers of surveys. 

Table 1. Coefficients from linear model results of the relationship in error in raven density estimates 
to number of surveys and estimated common raven (Corvus corax; raven) density. For each of 39 site 
unit-years with >300 surveys, density estimates were derived for different numbers of surveys by 
iteratively subsampling from the surveys within a given site, using successively fewer and fewer 
samples and re-evaluating density given the raven index equation. Error was calculated as the 
difference in density using all survey data from the density using the subsampled surveys.
Model Intercept (SE) βD (SE) βns (SE) βD:ns (SE) ΔAIC

𝐷𝐷𝐷𝐷� *ns + 𝐷𝐷𝐷𝐷�  + ns -0.327 (0.004) 0.739 (0.005) 0.001 (0.00002) -0.0032 (0.00004) 0.0

𝐷𝐷𝐷𝐷� -0.183 (0.003) 0.412 (0.005) 5165.8

𝐷𝐷𝐷𝐷� +ns -0.186 (0.004) 0.412 (0.005) 0.00002 (0.00002) 5166.6

ns -0.010 (0.005) 0.00004 (0.00003) 11317.6
Null -0.004171 (0.002270) 11317.7
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tion criterion (AIC). We report the coefficients 
with standard error (SE) from the best model 
(Table 1). Additionally, we added a calculation 
of error given sample size and 𝐷𝐷𝐷𝐷�  to the RAF.

Results
We detected 16,050 ravens (distance ≤1,125 

m) at 30,457 point-count surveys across 50 field
sites in the Great Basin, 2007–2019 (Table S2-1).
Of all surveys conducted, we detected ravens at
6,555 survey locations (21.5%). Raven density
estimates ranged from 0.00–1.86 ravens per
km-2 (𝑥̅𝑥𝑥𝑥  = 0.463, SD = 0.349) across all field sites
and years of the study (Table S2-2).

Raven density index for rapid 
assessment

Raven density corresponded closely to aver-
age number of ravens detected per survey (ra-
ven index) within each field site unit (distance 
≤1,125 m) with values of 0.00–2.889 (𝑥̅𝑥𝑥𝑥  = 0.546, 
SD = 0.430; Table S2-2). We found a strong as-
sociation between the distance-based model es-
timate and the raven index (R2 = 0.858). This in-
dicated that raven density estimates from dis-
tance sampling could be approximated by the 
raven index (𝛽̂𝛽𝛽𝛽 log(ravens/survey) = 0.917, SE(𝛽̂𝛽𝛽𝛽 ) = 0.033; 
Figure 3; Appendix C). 

Sensitivity to number of surveys
Based on simulation analyses, estimates of 

raven density calculated from the RAF were bi-
ased low on average at low sample sizes, while 
uncertainty in the estimate remained high at 
sample sizes <50 (Figure 4). The average abso-
lute difference of 𝐷𝐷𝐷𝐷�  from 𝐷𝐷𝐷𝐷� FULL began to stabilize 
between 50 and 100 surveys (Figure 4B). 

We found that the model that best described 
sample-size dependent error (𝐷𝐷𝐷𝐷�  - 𝐷𝐷𝐷𝐷� FULL) includ-
ed an interaction effect of 𝐷𝐷𝐷𝐷�  and number of sur-
veys (ΔAIC = 5,165.8 from the next best model). 
Specifically, we found a positive relationship 
between error and 𝐷𝐷𝐷𝐷�  (βD = 0.739 [SE = 0.005]) 
where high estimated density resulted in great-
er overestimation of raven density and low esti-
mated density resulted in greater underestima-
tion of raven density. However, this relation-
ship was dependent on number of surveys (βD:ns 
= -0.0032 [SE = 0.00004]; Table 1; Figure 5).

Discussion
Increasing populations of ravens subsidized 

by anthropogenic resources and development 
represent a novel threat to sensitive prey spe-
cies within semi-arid western ecosystems of 
North America. Nesting species at lower tro-
phic levels may be vulnerable to spillover 

Figure 3. Relationship between site- and year-specific estimates of common raven (Corvus corax; raven) den-
sity from distance sampling models (ravens × km-2) and the average number of ravens observed per survey at 
the corresponding site-years. Figure (A) represents the log-transformed data, while (B) represents back-trans-
formed estimates, which reflects output from the RAF. Points represent individual site-year estimates. Light 
gray shading represents 95% prediction interval and dark gray shading represents 50% prediction interval. 
Dashed gray line represents a 1:1 relationship.
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Figure 4. Ratio of estimated common raven (Corvus corax; raven) densities using subsampled survey data to 
estimated density using all surveys from each site unit-year (A), and absolute difference of density calculated 
using all surveys from estimated densities using subsamples (B), corresponding to number of surveys. Uncer-
tainty was measured by iteratively subsampling from the original point-count data and re-evaluating density 
given the raven index equation for each of 39 site unit-years with >300 surveys.    

Figure 5. Relationship between error in estimated common raven (Corvus corax; raven) 
density and number of surveys conducted across estimated raven densities. For each of 
39 site unit-years with >300 surveys, density estimates were derived for different number 
of surveys by iteratively subsampling from the surveys within a given site unit-year, using 
successively fewer and fewer samples and re-evaluating density with the raven index 
equation.
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(Kristan and Boarman 2003, Oro et al. 2013) or 
hyperpredation effects (Smith and Quin 1996) 
because ravens are opportunistic and prey-
switch with ease (Boarman and Heinrich 1999). 
These threats suggest that monitoring range 
expansion and population trends of ravens is 
likely to be an essential element of conservation 
and management plans for sensitive prey spe-
cies, especially as anthropogenic development 
continues to expand in remote areas (Restani 
et al. 2001, Kristan and Boarman 2007, O’Neil 
et al. 2018). By providing a sampling protocol 
(Appendix A), a simple index approach, and 
a Rapid Assessment Function (Appendix D) 
to estimate density of local populations using 
feasible point-count survey efforts, our objec-
tive was to advance land managers’ and bi-
ologists’ capacity to monitor and respond to 
changing predator communities to conserve 
sensitive species. The relationship established 
between the raven index (n ravens/n surveys) 
and estimates of density from more rigorous 
distance sampling methods (R2 = 0.86) was de-
veloped from intensive survey efforts occurring 
throughout sagebrush ecosystems of the Great 
Basin region of the United States. The RAF uses 
this estimated relationship to account for de-
tection probability of ravens within sagebrush 
ecosystems, serving as a correction factor on 
the raven index, and was reliable in its ability to 
estimate raven density with fewer surveys than 
distance-based modeling necessitates. As such, 
the RAF is the function we developed that al-
lows users to estimate density using n ravens/n 
surveys, which can support baseline monitor-
ing of local raven populations given efforts of 
50–100 point-count surveys to obtain an esti-
mate for regions of interest consistent in size 
with those in this study (~1,400 km2).   

While estimates from point-count surveys of 
ravens based on distance-based models provide 
precise and unbiased estimates for a site, land 
managers following our sampling protocol 
(Appendix A) can apply the RAF in situations 
where survey data are limited or insufficient 
for distance sampling methods. This allows for 
more efficient assessment of trends and evalua-
tion of the effectiveness of management actions 
when resources are limited. For example, it has 
been posited that 60 observations are necessary 
to estimate detection probability using distance-
based methods. Given the average proportion 

of surveys where ravens were detected in this 
study across sites and years (0.22, or about 1 out 
of every 5 surveys) and an average of 1.39 in-
dividual observations at surveys where ravens 
were detected, it would take ~195 surveys to 
reach this minimum. Because the RAF bypasses 
the need to directly estimate detection proba-
bility based on observations, our analysis sug-
gests that efforts may not need to exceed ~100 
surveys to achieve acceptable precision; for all 
sites where we conducted simulations, minimal 
gains in precision were achieved at larger num-
bers of surveys. In fact, the RAF can estimate 
density based on any number of surveys, pro-
vided managers use caution when interpreting 
results from small numbers of surveys. Reduc-
ing survey effort would alleviate some burden 
on managers and could make local-scale raven 
population assessment more efficient. To fur-
ther streamline trend monitoring, we provide 
an R function (Appendix D; R package [Roth et 
al. 2021a]) and web-based software (available 
at https://rconnect.usgs.gov/smart/; Roth et al. 
2021b) that facilitates rapid estimation of the ra-
ven density from the RAF by simply entering 
(1) how many surveys were conducted and (2)
the total number of ravens observed. While it
remains best practice to collect sufficient data
for implementation of distance sampling mod-
els (Buckland et al. 2001), being able to quickly
assess raven populations within smaller de-
fined areas is critical for management of sensi-
tive prey species that are likely vulnerable to
raven predation (Dettenmaier et al. 2021).

Important considerations for the use of this 
tool are the spatial and temporal distribution 
of surveys. The sites within this study ranged 
from 42.8–4,739.1 km2. The average number of 
surveys per 100 km2 was ~12.0 (SE = 1.7), with 
larger sites generally consisting of higher num-
bers of surveys because more were needed to 
adequately sample larger areas (Appendix B). 
While many survey locations within this study 
were associated with sage-grouse telemetry 
locations, we also included random locations 
throughout study sites to incorporate variation 
in landscape characteristics. For example, while 
sage-grouse might tend to be located within 
more rural areas, ravens utilizing nearby an-
thropogenic subsidies must also be accounted 
for. Raven surveys must be randomly situated 
around study sites and must incorporate re-
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mote regions within the study area (where ra-
ven numbers may be relatively low) as well as 
areas in proximity to anthropogenic subsidies, 
which ravens may utilize for nesting and for-
aging areas. Within this study, 95% of surveys 
took place during the reproductive season for 
both sage-grouse and ravens. During the re-
productive season, breeding ravens are largely 
confined to an area ~1500 m around their nest, 
whereas non-breeding (or transient) ravens are 
less territorial and forage across a larger area 
(Harju et al. 2018). Following nesting, breed-
ing ravens behave similarly to non-breeding 
ravens and rely more heavily on anthropogenic 
subsidies for foraging (Harju et al. 2018). Thus, 
groups of ravens might be more likely to be ob-
served after nesting season concludes or dur-
ing the nesting season in areas with important 
foraging or water sources for non-breeding ra-
vens. Understanding the population structure 
of ravens as well as temporal and spatial dy-
namics of ravens at a site will be imperative for 
balancing efforts at sites and within and across 
years. 

By subsampling survey data, we estimated 
deviation in the RAF estimates from those using 
the complete data from each site as a function of 
sample size (number of surveys) to inform the 
minimum number of surveys needed to obtain 
stable estimates from the method. Importantly, 
this analysis was dependent on the assumption 
that density estimates using the full dataset 
from each site were unbiased estimates. Specifi-
cally, the RAF overestimated density when low 
numbers of surveys occurred at sites with high 
density, such as those with more availability of 
subsidies, where the likelihood of detecting a 
raven or group of ravens at a single survey was 
higher. These areas might be subject to more 
variation in raven density estimates, and thus, 
more surveys would be needed to balance out 
observations. Conversely, at low density sites, 
there was a higher likelihood of zero-count sur-
veys, and the RAF underestimated density with 
low numbers of surveys. Importantly, the po-
tential for underestimation is only as high as the 
true density, whereas the potential for overesti-
mation can be large, especially in areas where 
large groups of ravens may be observed, such 
as areas with large groups of transient ravens. 
This trend further illustrates the importance of 
balanced spatial and temporal distribution of 

surveys. At higher numbers of surveys, RAF 
estimates were unbiased under the assumption 
that the RAF prediction from the full number of 
surveys represented the true value (i.e., the best 
fit to estimates from distance sampling mod-
els). Further analyses and validation based on 
precision and power from distance sampling 
model results will improve the utility of such 
rapid assessments and can be used to update 
the RAF approach.  

Within the RAF, we incorporated an option 
for a correction factor on the 95% confidence 
intervals to incorporate uncertainty associated 
with varying densities and effort across sites 
and years so that users of the tool are aware of 
sources of uncertainty when developing man-
agement plans based on raven density. Confi-
dence in density estimates may help facilitate 
empirical-based decisions made by land and 
wildlife managers regarding prescription of 
management practices (Dettenmaier et al. 2021). 
For example, if density thresholds drive the de-
cision to pursue management actions, incorpo-
rating the secondary error term would provide 
the most conservative estimates of variance in 
raven density. Where high levels of uncertainty 
in density exist, managers might conduct addi-
tional raven surveys to gain confidence in esti-
mates before targeting management actions. 

This approach was developed in a sagebrush 
steppe ecosystem and does not capture varia-
tion in detectability that may occur within dif-
ferent ecosystems, sites, over time, and among 
observers. Variation in detection that is not 
captured in distance sampling models is likely 
the main cause of deviation away from “true” 
density estimates. Furthermore, variation in de-
tectability is the most likely reason for the RAF 
estimate to deviate from the distance sampling 
density estimate (Figure 3), which is especially 
problematic in locations that are different from 
the system where the index was derived. For 
example, ravens are conspicuous in relatively 
open habitats, whereas habitats characterized 
by dense vegetation (i.e., forests) or areas with 
more limited viewshed may have reduced 
detectability of ravens. Because our distance 
models do not account for reduced detection 
probability (i.e., the ability to see a raven given 
that it is present) in such habitats, the RAF may 
underestimate raven density in those areas. 
More rigorous distance data would be required 
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to estimate raven detection more accurately in 
areas with restricted visibility. However, we be-
lieve the RAF in this study can be used in open 
habitats with some heterogeneous topography 
that share similar characteristics to sagebrush 
ecosystems.

Management implications
Increasing evidence of raven effects on mul-

tiple sensitive species (Coates et al. 2021) rein-
forces the need for adaptive management strat-
egies and rapid assessment protocols for ravens 
within ecosystems where predator–prey con-
flicts exist. We anticipate that monitoring raven 
population trends will continue to be an im-
portant component of conservation and man-
agement plans for the numerous wildlife prey 
species that are likely to be affected, especially 
as widespread anthropogenic development 
continues to accelerate in remote areas. By esti-
mating a simple index and using it to calculate 
density using our RAF estimation approach for 
rapid assessment of local populations, we have 
advanced the capabilities of land managers and 
biologists to monitor and respond to changing 
predator communities.
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