809 research outputs found

    Transposon and deletion mutagenesis of genes involved in perchlorate reduction in Azospira suillum PS.

    Get PDF
    UnlabelledAlthough much work on the biochemistry of the key enzymes of bacterial perchlorate reduction, chlorite dismutase, and perchlorate reductase has been published, understanding of the molecular mechanisms of this metabolism has been somewhat hampered by the lack of a clear model system amenable to genetic manipulation. Using transposon mutagenesis and clean deletions, genes important for perchlorate reduction in Azospira suillum PS have been identified both inside and outside the previously described perchlorate reduction genomic island (PRI). Transposon mutagenesis identified 18 insertions in 11 genes that completely abrogate growth via reduction of perchlorate but have no phenotype during denitrification. Of the mutants deficient in perchlorate reduction, 14 had insertions that were mapped to eight different genes within the PRI, highlighting its importance in this metabolism. To further explore the role of these genes, we also developed systems for constructing unmarked deletions and for complementing these deletions. Using these tools, every core gene in the PRI was systematically deleted; 8 of the 17 genes conserved in the PRI are essential for perchlorate respiration, including 3 genes that comprise a unique histidine kinase system. Interestingly, the other 9 genes in the PRI are not essential for perchlorate reduction and may thus have unknown functions during this metabolism. We present a model detailing our current understanding of perchlorate reduction that incorporates new concepts about this metabolism.ImportanceAlthough perchlorate is generated naturally in the environment, groundwater contamination is largely a result of industrial activity. Bacteria capable of respiring perchlorate and remediating contaminated water have been isolated, but relatively little is known about the biochemistry and genetics of this process. Here we used two complementary approaches to identify genes involved in perchlorate reduction. Most of these genes are located on a genomic island, which is potentially capable of moving between organisms. Some of the genes identified are known to be directly involved in the metabolism of perchlorate, but other new genes likely regulate the metabolism in response to environmental signals. This work has uncovered new questions about the regulation, energetics, and evolution of perchlorate reduction but also presents the tools to address them

    Structure and evolution of chlorate reduction composite transposons.

    Get PDF
    UnlabelledThe genes for chlorate reduction in six bacterial strains were analyzed in order to gain insight into the metabolism. A newly isolated chlorate-reducing bacterium (Shewanella algae ACDC) and three previously isolated strains (Ideonella dechloratans, Pseudomonas sp. strain PK, and Dechloromarinus chlorophilus NSS) were genome sequenced and compared to published sequences (Alicycliphilus denitrificans BC plasmid pALIDE01 and Pseudomonas chloritidismutans AW-1). De novo assembly of genomes failed to join regions adjacent to genes involved in chlorate reduction, suggesting the presence of repeat regions. Using a bioinformatics approach and finishing PCRs to connect fragmented contigs, we discovered that chlorate reduction genes are flanked by insertion sequences, forming composite transposons in all four newly sequenced strains. These insertion sequences delineate regions with the potential to move horizontally and define a set of genes that may be important for chlorate reduction. In addition to core metabolic components, we have highlighted several such genes through comparative analysis and visualization. Phylogenetic analysis places chlorate reductase within a functionally diverse clade of type II dimethyl sulfoxide (DMSO) reductases, part of a larger family of enzymes with reactivity toward chlorate. Nucleotide-level forensics of regions surrounding chlorite dismutase (cld), as well as its phylogenetic clustering in a betaproteobacterial Cld clade, indicate that cld has been mobilized at least once from a perchlorate reducer to build chlorate respiration.ImportanceGenome sequencing has identified, for the first time, chlorate reduction composite transposons. These transposons are constructed with flanking insertion sequences that differ in type and orientation between organisms, indicating that this mobile element has formed multiple times and is important for dissemination. Apart from core metabolic enzymes, very little is known about the genetic factors involved in chlorate reduction. Comparative analysis has identified several genes that may also be important, but the relative absence of accessory genes suggests that this mobile metabolism relies on host systems for electron transport, regulation, and cofactor synthesis. Phylogenetic analysis of Cld and ClrA provides support for the hypothesis that chlorate reduction was built multiple times from type II dimethyl sulfoxide (DMSO) reductases and cld. In at least one case, cld has been coopted from a perchlorate reduction island for this purpose. This work is a significant step toward understanding the genetics and evolution of chlorate reduction

    Synthetic and Evolutionary Construction of a Chlorate-Reducing Shewanella oneidensis MR-1.

    Get PDF
    UnlabelledDespite evidence for the prevalence of horizontal gene transfer of respiratory genes, little is known about how pathways functionally integrate within new hosts. One example of a mobile respiratory metabolism is bacterial chlorate reduction, which is frequently encoded on composite transposons. This implies that the essential components of the metabolism are encoded on these mobile elements. To test this, we heterologously expressed genes for chlorate reduction from Shewanella algae ACDC in the non-chlorate-reducing Shewanella oneidensis MR-1. The construct that ultimately endowed robust growth on chlorate included cld, a cytochrome c gene, clrABDC, and two genes of unknown function. Although strain MR-1 was unable to grow on chlorate after initial insertion of these genes into the chromosome, 11 derived strains capable of chlorate respiration were obtained through adaptive evolution. Genome resequencing indicated that all of the evolved chlorate-reducing strains replicated a large genomic region containing chlorate reduction genes. Contraction in copy number and loss of the ability to reduce chlorate were also observed, indicating that this phenomenon was extremely dynamic. Although most strains contained more than six copies of the replicated region, a single strain with less duplication also grew rapidly. This strain contained three additional mutations that we hypothesized compensated for the low copy number. We remade the mutations combinatorially in the unevolved strain and determined that a single nucleotide polymorphism (SNP) upstream of cld enabled growth on chlorate and was epistatic to a second base pair change in the NarP binding sequence between narQP and nrfA that enhanced growth.ImportanceThe ability of chlorate reduction composite transposons to form functional metabolisms after transfer to a new host is an important part of their propagation. To study this phenomenon, we engineered Shewanella oneidensis MR-1 into a chlorate reducer. We defined a set of genes sufficient to endow growth on chlorate from a plasmid, but found that chromosomal insertion of these genes was nonfunctional. Evolution of this inoperative strain into a chlorate reducer showed that tandem duplication was a dominant mechanism of activation. While copy number changes are a relatively rapid way of increasing gene dosage, replicating almost 1 megabase of extra DNA is costly. Mutations that alleviate the need for high copy number are expected to arise and eventually predominate, and we identified a single nucleotide polymorphism (SNP) that relieved the copy number requirement. This study uses both rational and evolutionary approaches to gain insight into the evolution of a fascinating respiratory metabolism

    Microbes Pumping Iron: Anaerobic Microbial Iron Oxidation and Reduction

    Get PDF
    Iron (Fe) has long been a recognized physiological requirement for life, yet for many microorganisms that persist in water, soils and sediments, its role extends well beyond that of a nutritional necessity. Fe(II) can function as an electron source for iron-oxidizing microorganisms under both oxic and anoxic conditions and Fe(III) can function as a terminal electron acceptor under anoxic conditions for iron-reducing microorganisms. Given that iron is the fourth most abundant element in the Earth\u27s crust, iron redox reactions have the potential to support substantial microbial populations in soil and sedimentary environments. As such, biological iron apportionment has been described as one of the most ancient forms of microbial metabolism on Earth, and as a conceivable extraterrestrial metabolism on other iron-mineral-rich planets such as Mars. Furthermore, the metabolic versatility of the microorganisms involved in these reactions has resulted in the development of biotechnological applications to remediate contaminated environments and harvest energy

    Draft Genome Sequence of the Anaerobic, Nitrate-Dependent, Fe(II)-Oxidizing Bacterium \u3ci\u3ePseudogulbenkiania ferrooxidans\u3c/i\u3e Strain 2002

    Get PDF
    Pseudogulbenkiania ferrooxidans strain 2002 was isolated as a lithoautotrophic, Fe(II)-oxidizing, nitrate-reducing bacterium. Phylogenetically, it is in a clade within the family Neisseriaceae in the order Nessieriales of the class Betaproteobacteria. It is anticipated that comparative genomic analysis of this strain with other nitrate-dependent, Fe(II)-oxidizing bacteria will aid in the elucidation of the genetics and biochemistry underlying this critically important geochemical metabolism
    corecore