8 research outputs found

    Effect of aerobic training on (99m)Tc-methoxy isobutyl isonitrile ((99m)Tc-sestamibi) uptake by myocardium and skeletal muscle: implication for noninvasive assessment of muscle metabolic profile

    No full text
    Aim: The effect of long-term endurance training on skeletal muscle and myocardial uptake of (99m)Tc-sestamibi, a radiopharmaceutical accumulating in the mitochondria, was investigated. Methods: Twenty-six Wistar rats were divided into a trained (5 days week(-1) endurance running for 14 weeks) and an untrained group. On completion of training, (99m)Tc-sestamibi was administered and, 2 h post-injection, the myocardium and the soleus, extensor digitorum longus (EDL) and medial gastrocnemius (MG) muscles were removed for the measurement of cytochrome c oxidase (CCO) activity and (99m)Tc-sestamibi uptake. Tissue (99m)Tc-sestamibi kinetics was preliminarily studied in 16 other rats for up to 2 h post-injection. Results: Two hours post-injection (99m)Tc-sestamibi uptake was either stable (myocardium) or still rising (skeletal muscles). Both CCO activity and (99m)Tc-sestamibi uptake decreased in the same order (myocardium, soleus, EDL, MG) in the tissues examined. The CCO activity of the EDL and MG muscles was higher (P < 0.05) in the trained compared to the untrained group. (99m)Tc-sestamibi uptake in the soleus and EDL muscles was higher (P < 0.05) in the trained compared to the untrained rats, whereas the difference in MG was marginally significant (P = 0.06) in favour of the trained group. Conclusions: Long-term endurance training, resulting in elevated skeletal muscle CCO activity, is also associated with a similar increase in (99m)Tc-sestamibi uptake. This finding suggests that (99m)Tc-sestamibi could be used in imaging assessment of skeletal muscle metabolism with possible applications in both clinical and sports medicine settings

    Transmission of HIV drug resistance and the predicted effect on current first-line regimens in Europe

    Get PDF
    Numerous studies have shown that baseline drug resistance patterns may influence the outcome of antiretroviral therapy. Therefore, guidelines recommend drug resistance testing to guide the choice of initial regimen. In addition to optimizing individual patient management, these baseline resistance data enable transmitted drug resistance (TDR) to be surveyed for public health purposes. The SPREAD program systematically collects data to gain insight into TDR occurring in Europe since 2001. Demographic, clinical, and virological data from 4140 antiretroviral-naive human immunodeficiency virus (HIV)-infected individuals from 26 countries who were newly diagnosed between 2008 and 2010 were analyzed. Evidence of TDR was defined using the WHO list for surveillance of drug resistance mutations. Prevalence of TDR was assessed over time by comparing the results to SPREAD data from 2002 to 2007. Baseline susceptibility to antiretroviral drugs was predicted using the Stanford HIVdb program version 7.0. The overall prevalence of TDR did not change significantly over time and was 8.3% (95% confidence interval, 7.2%-9.5%) in 2008-2010. The most frequent indicators of TDR were nucleoside reverse transcriptase inhibitor (NRTI) mutations (4.5%), followed by nonnucleoside reverse transcriptase inhibitor (NNRTI) mutations (2.9%) and protease inhibitor mutations (2.0%). Baseline mutations were most predictive of reduced susceptibility to initial NNRTI-based regimens: 4.5% and 6.5% of patient isolates were predicted to have resistance to regimens containing efavirenz or rilpivirine, respectively, independent of current NRTI backbones. Although TDR was highest for NRTIs, the impact of baseline drug resistance patterns on susceptibility was largest for NNRTIs. The prevalence of TDR assessed by epidemiological surveys does not clearly indicate to what degree susceptibility to different drug classes is affected

    Transmission of HIV drug resistance and the predicted effect on current first-line regimens in Europe

    Get PDF
    Background. Numerous studies have shown that baseline drug resistance patterns may influence the outcome of antiretroviral therapy. Therefore, guidelines recommend drug resistance testing to guide the choice of initial regimen. In addition to optimizing individual patient management, these baseline resistance data enable transmitted drug resistance (TDR) to be surveyed for public health purposes. The SPREAD program systematically collects data to gain insight into TDR occurring in Europe since 2001. Methods. Demographic, clinical, and virological data from 4140 antiretroviral-naive human immunodeficiency virus (HIV)-infected individuals from 26 countries who were newly diagnosed between 2008 and 2010 were analyzed. Evidence of TDR was defined using the WHO list for surveillance of drug resistance mutations. Prevalence of TDR was assessed over time by comparing the results to SPREAD data from 2002 to 2007. Baseline susceptibility to antiretroviral drugs was predicted using the Stanford HIVdb program version 7.0. Results. The overall prevalence of TDR did not change significantly over time and was 8.3% (95% confidence interval, 7.2%-9.5%) in 2008-2010. The most frequent indicators of TDR were nucleoside reverse transcriptase inhibitor (NRTI) mutations (4.5%), followed by nonnucleoside reverse transcriptase inhibitor (NNRTI) mutations (2.9%) and protease inhibitor mutations (2.0%). Baseline mutations were most predictive of reduced susceptibility to initial NNRTI-based regimens: 4.5% and 6.5% of patient isolates were predicted to have resistance to regimens containing efavirenz or rilpivirine, respectively, independent of current NRTI backbones. Conclusions. Although TDR was highest for NRTIs, the impact of baseline drug resistance patterns on susceptibility was largest for NNRTIs. The prevalence of TDR assessed by epidemiological surveys does not clearly indicate to what degree susceptibility to different drug classes is affected
    corecore