40 research outputs found

    Monopoles for Gravitation and for Higher Spin Fields

    Full text link
    We consider massless higher spin gauge theories with both electric and magnetic sources, with a special emphasis on the spin two case. We write the equations of motion at the linear level (with conserved external sources) and introduce Dirac strings so as to derive the equations from a variational principle. We then derive a quantization condition that generalizes the familiar Dirac quantization condition, and which involves the conserved charges associated with the asymptotic symmetries for higher spins. Next we discuss briefly how the result extends to the non linear theory. This is done in the context of gravitation, where the Taub-NUT solution provides the exact solution of the field equations with both types of sources. We rederive, in analogy with electromagnetism, the quantization condition from the quantization of the angular momentum. We also observe that the Taub-NUT metric is asymptotically flat at spatial infinity in the sense of Regge and Teitelboim (including their parity conditions). It follows, in particular, that one can consistently consider in the variational principle configurations with different electric and magnetic masses.Comment: 24 page

    Simple compactifications and Black p-branes in Gauss-Bonnet and Lovelock Theories

    Get PDF
    We look for the existence of asymptotically flat simple compactifications of the form MDp×TpM_{D-p}\times T^{p} in DD-dimensional gravity theories with higher powers of the curvature. Assuming the manifold MDpM_{D-p} to be spherically symmetric, it is shown that the Einstein-Gauss-Bonnet theory admits this class of solutions only for the pure Einstein-Hilbert or Gauss-Bonnet Lagrangians, but not for an arbitrary linear combination of them. Once these special cases have been selected, the requirement of spherical symmetry is no longer relevant since actually any solution of the pure Einstein or pure Gauss-Bonnet theories can then be toroidally extended to higher dimensions. Depending on pp and the spacetime dimension, the metric on MDpM_{D-p} may describe a black hole or a spacetime with a conical singularity, so that the whole spacetime describes a black or a cosmic pp-brane, respectively. For the purely Gauss-Bonnet theory it is shown that, if MDpM_{D-p} is four-dimensional, a new exotic class of black hole solutions exists, for which spherical symmetry can be relaxed. Under the same assumptions, it is also shown that simple compactifications acquire a similar structure for a wide class of theories among the Lovelock family which accepts this toroidal extension. The thermodynamics of black pp-branes is also discussed, and it is shown that a thermodynamical analogue of the Gregory-Laflamme transition always occurs regardless the spacetime dimension or the theory considered, hence not only for General Relativity. Relaxing the asymptotically flat behavior, it is also shown that exact black brane solutions exist within a very special class of Lovelock theories.Comment: 30 pages, no figures, few typos fixed, references added, final version for JHE

    Master Higher-Spin Particle

    Full text link
    We propose a "master" higher-spin (HS) particle system. The particle model relevant to the unfolded formulation of HS theory, as well as the HS particle model with a bosonic counterpart of supersymmetry, follow from the master model as its two different gauges. Quantization of the master system gives rise to a new form of the massless HS equations in an extended space involving, besides extra spinorial coordinates, also a complex scalar one. As solutions to these equations we recover the massless HS multiplet with fields of all integer and half-integer helicities, and obtain new multiplets with a non-zero minimal helicity. The HS multiplets are described by complex wave functions which are holomorphic in the scalar coordinate and carry an extra U(1) charge q. The latter fully characterizes the given multiplet by fixing the minimal helicity as q/2. We construct a twistorial formulation of the master system and present the general solution of the associate HS equations through an unconstrained twistor "prepotential".Comment: 21 pages, minor corrections, version to appear in Class. Quantum Gra

    Consistent deformations of [p,p]-type gauge field theories

    Full text link
    Using BRST-cohomological techniques, we analyze the consistent deformations of theories describing free tensor gauge fields whose symmetries are represented by Young tableaux made of two columns of equal length p, p>1. Under the assumptions of locality and Poincare invariance, we find that there is no consistent deformation of these theories that non-trivially modifies the gauge algebra and/or the gauge transformations. Adding the requirement that the deformation contains no more than two derivatives, the only possible deformation is a cosmological-constant-like term.Comment: 17 pages, details of a proof added, accepted for publication in JHE

    Propagating modes of non-Abelian tensor gauge field of second rank

    Full text link
    In the recently proposed extension of the YM theory, non-Abelian tensor gauge field of the second rank is represented by a general tensor whose symmetric part describes the propagation of charged gauge boson of helicity two and its antisymmetric part - the helicity zero charged gauge boson. On the non-interacting level these polarizations are similar to the polarizations of the graviton and of the Abelian antisymmetric B field, but the interaction of these gauge bosons carrying non-commutative internal charges cannot be directly identified with the interaction of gravitons or B field. Our intention here is to illustrate this result from different perspectives which would include Bianchi identity for the corresponding field strength tensor and the analysis of the second-order partial differential equation which describes in this theory the propagation of non-Abelian tensor gauge field of the second rank.Comment: 22 pages, Latex fil

    On gravitational interactions for massive higher spins in AdS3AdS_3

    Full text link
    In this paper we investigate gravitational interactions of massive higher spin fields in three dimensional AdSAdS space with arbitrary value of cosmological constant including flat Minkowski space. We use frame-like gauge description for such massive fields adopted to three-dimensional case. At first, we carefully analyze the procedure of switching on gravitational interactions in the linear approximation on the example of massive spin-3 field and then proceed with the generalization to the case of arbitrary integer spin field. As a result we construct a cubic interaction vertex linear in spin-2 field and quadratic in higher spin field on AdS3AdS_3 background. As in the massless case the vertex does not contain any higher derivative corrections to the Lagrangian and/or gauge transformations. Thus, even after switching on gravitational interactions, one can freely consider any massless or partially massless limits as well as the flat one.Comment: 21 pages. Some clarifications and 1 new reference added. Version to appear in the J.Phys.A special volume on "Higher Spin Theories and AdS/CFT" edited by Matthias Gaberdiel and Mikhail Vasilie

    A note on spin-s duality

    Full text link
    Duality is investigated for higher spin (s2s \geq 2), free, massless, bosonic gauge fields. We show how the dual formulations can be derived from a common "parent", first-order action. This goes beyond most of the previous treatments where higher-spin duality was investigated at the level of the equations of motion only. In D=4 spacetime dimensions, the dual theories turn out to be described by the same Pauli-Fierz (s=2) or Fronsdal (s3s \geq 3) action (as it is the case for spin 1). In the particular s=2 D=5 case, the Pauli-Fierz action and the Curtright action are shown to be related through duality. A crucial ingredient of the analysis is given by the first-order, gauge-like, reformulation of higher spin theories due to Vasiliev.Comment: Minor corrections, reference adde

    On Higher Order Gravities, Their Analogy to GR, and Dimensional Dependent Version of Duff's Trace Anomaly Relation

    Full text link
    An almost brief, though lengthy, review introduction about the long history of higher order gravities and their applications, as employed in the literature, is provided. We review the analogous procedure between higher order gravities and GR, as described in our previous works, in order to highlight its important achievements. Amongst which are presentation of an easy classification of higher order Lagrangians and its employment as a \emph{criteria} in order to distinguish correct metric theories of gravity. For example, it does not permit the inclusion of only one of the second order Lagrangians in \emph{isolation}. But, it does allow the inclusion of the cosmological term. We also discuss on the compatibility of our procedure and the Mach idea. We derive a dimensional dependent version of Duff's trace anomaly relation, which in \emph{four}-dimension is the same as the usual Duff relation. The Lanczos Lagrangian satisfies this new constraint in \emph{any} dimension. The square of the Weyl tensor identically satisfies it independent of dimension, however, this Lagrangian satisfies the previous relation only in three and four dimensions.Comment: 30 pages, added reference
    corecore