669 research outputs found

    Brillouin Scattering Self-cancellation

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)The interaction between light and acoustic phonons is strongly modified in sub-wavelength confinement, and has led to the demonstration and control of Brillouin scattering in photonic structures such as nano-scale optical waveguides and cavities. Besides the small optical mode volume, two physical mechanisms come into play simultaneously: a volume effect caused by the strain-induced refractive index perturbation (known as photo-elasticity), and a surface effect caused by the shift of the optical boundaries due to mechanical vibrations. As a result, proper material and structure engineering allows one to control each contribution individually. Here, we experimentally demonstrate the perfect cancellation of Brillouin scattering arising from Rayleigh acoustic waves by engineering a silica nanowire with exactly opposing photo-elastic and moving-boundary effects. This demonstration provides clear experimental evidence that the interplay between the two mechanisms is a promising tool to precisely control the photon-phonon interaction, enhancing or suppressing it.7Sao Paulo Research Foundation (FAPESP) [2013/20180-3, 2012/17765-7, 2012/17610-3, 08/57857-2]National Council for Scientific and Technological Development (CNPq) [574017/2008-9]Coordination for the Improvement of Higher Education Personnel (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Tetragonal-cubic phase transition in KGaSi2O6 synthetic leucite analogue and its probable mechanism

    Get PDF
    Synthetic leucite KGaSi2O6 at 298K is I41/a tetragonal and is isostructural with natural leucite (KAlSi2O6); with unit cell parameters of a ​= ​13.1099 (4), c ​= ​13.8100 (4) Å, V ​= ​2373.50 (12) Å3. With increasing temperature it undergoes a reversible, displacive phase transition from I41/a to cubic Ia3‾d; this well-studied phase transition in KAlSi2O6 occurs at ~930K. However for KGaSi2O6 it is smeared out from 673 to ~970K where it consists of a mixture of the low- and high-temperature polymorphs. The proportion of the cubic phase increases with temperature; the cubic phase volume is ~1% larger than the coexisting tetragonal polymorph. At a fixed temperature within this ‘region of coexistence’ phase proportions do not change. Such features are characteristic of 1st order, diffusionless, strain-meditated, martensitic-type phase transitions. It seems that the phase transition for synthetic KGaSi2O6 is close to being purely ferroelastic in character

    Monoclinic-orthorhombic first-order phase transition in K<inf>2</inf>ZnSi<inf>5</inf>O<inf>12</inf>leucite analogue; Transition mechanism and spontaneous strain analysis

    Get PDF
    Hydrothermally synthesised K2ZnSi5O12 has a polymerized framework structure with the same topology as leucite (KAlSi2O6, tetragonal I41/a), which has two tetrahedrally coordinated Al3+ cations replaced by Zn2+ and Si4+. At 293K it has a cation-ordered framework P21/c monoclinic structure with lattice parameters a = 13.1773(2)A, b = 13.6106(2) A, c = 13.0248(2)A, = 91.6981(9). This structure is isostructural with K2MgSi5O12, the first cation-ordered leucite analogue characterised. With increasing temperature, the P21/c structure transforms reversibly to cation-ordered framework orthorhombic Pbca. This transition takes place over the temperature range 848-863K where both phases coexist; there is an 1.2% increase in unit cell volume between 843K (P21/c) and 868K (Pbca), characteristic of a first-order, displacive, ferroelastic phase transition. Spontaneous strain analysis defines the symmetry- and non-symmetry related changes and shows that the mechanism is weakly first order; the two-phase region is consistent with the mechanism being a strain-related martensitic transition

    Turkey\u27s CMB Revises Short-Selling Ban

    Get PDF

    Announcement on Measures with Respect to Capital Markets in Response to the COVID-19 Outbreak

    Get PDF

    Analysis and optimization of an all-fiber device based on photonic crystal fiber with integrated electrodes

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)We present both numerical and experimental studies of an all-fiber device based on the integration of metallic electrodes into photonic crystal fibers (PCF). The device operation consists on applying electrical current to the electrodes which, by Joule effect, expand and squeeze the PCF microstructure in a preferential direction, altering both phase and group birefringence. We investigate the effect of integrating electrodes into the fiber and the dependence of the device sensitivity on the electrode configuration and composition. (C) 2010 Optical Society of America18328422848Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Opening up optical fibres

    Get PDF
    A unique optical fibre design is presented in this work: a laterally accessible microstructured optical fibre, in which one of the cladding holes is open to the surrounding environment and the waveguide core exposed over long lengths of fibre. Such a fibre offers the opportunity of real-time chemical sensing and biosensing not previously possible with conventional microstructured optical fibres, as well as the ability to functionalize the core of the fibre without interference from the cladding. The fabrication of such a fibre using PMMA is presented, as well as experimental results demonstrating the use of the fibre as a evanescent wave absorption spectroscopy pH sensor using the indicator Bromothymol Blue. (C) 2007 Optical Society of America.1519118431184

    Broadband dispersion compensation using inner cladding modes in photonic crystal fibers

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)A photonic crystal fiber is optimized for chromatic dispersion compensation by using inner cladding modes. To this end, a photonic-oriented version of the downhill-simplex algorithm is employed. The numerical results show a dispersion profile that accurately compensates the targeted dispersion curve, as well as its dispersion slope. The presented fiber has a simple structure, while radiation losses can be reduced simply by adding a few more air-hole rings. Fabrication tolerances are also considered showing how fabrication inaccuracies effects can be overridden by just adjusting the compensation length. (C) 2012 Optical Society of America20434673472Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Spanish Ministerio de Educacion y Ciencia (MEC)Generalitat Valenciana [TEC2008-05490, PROMETEO2009-077]Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Generalitat Valenciana [TEC2008-05490, PROMETEO2009-077]FAPESP [2011/01524-8
    • …
    corecore