
Broadband dispersion compensation
using inner cladding modes in photonic

crystal fibers

Felipe Beltrán-Mejı́a,1,2 Cristiano M. B. Cordeiro,2 Pedro Andrés,1

and Enrique Silvestre1,∗
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Abstract: A photonic crystal fiber is optimized for chromatic dispersion
compensation by using inner cladding modes. To this end, a photonic-
oriented version of the downhill-simplex algorithm is employed. The
numerical results show a dispersion profile that accurately compensates the
targeted dispersion curve, as well as its dispersion slope. The presented
fiber has a simple structure, while radiation losses can be reduced simply by
adding a few more air-hole rings. Fabrication tolerances are also considered
showing how fabrication inaccuracies effects can be overridden by just
adjusting the compensation length.
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1. Introduction

Photonic crystal fibers (PCF) are optical fibers with a transversal array of air-holes that extends
along all the fiber’s length [1]. PCFs optical guiding is due to the multiple interference attributed
to the periodical array of air-holes and also by the high index contrast between silica and air
[2]. The rich geometry of the fiber’s microstructure and its complex wave-guiding mechanism
makes PCFs the suitable choice for a great deal of applications such as dispersion compensators,
interferometers, super-continuum generators and polarization maintainers between others [3–
5]. Up to now, the dispersive behavior on PCFs have been studied thoroughly for the core modes
[6–8]. In comparison, little has been deepened in higher order modes propagating through the
cladding of a PCF [9], despite of the geometrical richness and the dispersion control provided
by their cladding structures.

In this work we present, as an example of realistic applications using inner cladding modes,
a dispersion compensating fiber with a very low residual dispersion. To fulfill this goal, a
photonic-oriented version of the downhill-simplex algorithm [10] — utilizing a proper scal-
ing rule for dispersion — has been implemented and is presented here along with the results
of the optimization process and the fabrication tolerances for the proposed fiber (Fig. 1). The
adapted procedure considerably speeds the pace towards convergence, giving a more optical
criteria to shorten the way through the optimization process. Comparisons will show the bene-
fits of the introduced modifications, followed by the results obtained for the compensating PCF
using inner cladding modes. In addition, a complete analysis of the fabrication tolerances and
the radiation losses is presented for the proposed fiber. Finally, the benefits and disadvantages
of this approach will be discussed along with the conclusions of this proposal.

2. Photonic-oriented optimization method

Since there is a considerable number of parameters involved in the optimization of the perfor-
mance of a microstructured fiber (e.g., different air-hole diameters, lattice pitch, and others),
it is convenient to get hold of the right tool previous to deal with the optimization process of
the fiber structure. Many methods are available for tackling this task, and some of them has
been used for optimizing guiding microstructures, as it is the case of stochastic or genetic al-
gorithms [11] or those based on the knowledge of first derivatives [5]. The downhill-simplex
method has been successfully applied to optimize optical applications such as fiber lasers or
nonlinear wavelength converters, as well as in chemistry, mechanical engineering, biomedical
imaging, geophysics among others fields where a multidimensional unconstrained minimiza-
tion is required [12, 13]. Its geometric nature makes it suitable for customizations as well as
combinations with other optimization methods. Here we adapted this method for a concrete
objective, a compensating fiber, obtaining acceptable results with a low investment of compu-
tation time. Although, it is worth to point out that this enhancement does not rely on any detail
of the algorithm, therefore is independent of the optimization method.
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Fig. 1. Left, initial fiber structure used during the optimization process. Right, one of the
LP11 modes used here for dispersion compensation and a fundamental mode, LP01, for
illustration purposes.

In our case, in order to compensate the chromatic dispersion of a certain distance of a given
standard single mode fiber (SMF) with the unity distance of a compensating fiber, we define a
merit function

χ2[P] = ∑
λ
{D[P](λ )+X DSMF(λ )}2 , (1)

where DSMF and D[P] are the dispersion profiles of the single mode fiber and the compen-
sating fiber respectively; both must have opposite signs in order to minimize χ2. The vector
P = (p1, . . . , pN) represents a given configuration defined by N design parameters, pi, and X is
the compensation factor, that is, the ratio between the lengths of the SMF and the compensating
fiber. In Eq. (1), the expression between curly brackets is proportional to the residual dispersion
of the whole system and the sum is performed over a finite number of wavelengths in the design
interval (the C band, 1530nm ≤ λ ≤ 1565nm).

In the search for a minimum of the merit function, the downhill-method uses N +1 points as
vertices to construct a geometrical object, the simplex, that evolves in the quest for the lowest
point in the N-dimensional parameter space. The search for configurations with lower values
of χ2 includes several geometrical strategies around the lowest point to go “downhill” through
the merit function. Every step in the algorithm tries to replace the worst vertices — with higher
values of χ2 — of the simplex with other points presenting lower values of the merit function.
In this way the simplex always brings together the set of the best N + 1 fibers of all those
who have been examined through the optimization process. That makes the downhill-simplex
method an effective and easy to use optimization technique, appropriate when the derivate of
the merit function is not available or is expensive to obtain.

However, it must be taken into account that any attempt of substituting a point of the simplex
implies the evaluation of the merit function at the candidate point to be included in. And, as
the fiber structure grows in complexity, the space of parameters and the optimization proce-
dure raise in dimensions and in computation time respectively. To lessen this disadvantage the
downhill-simplex algorithm can be customized with an extra step that fastens the convergence.
This new kind of step is based on the magnification, M, of the structure, a geometrical transfor-
mation that has a special relevance since strongly affects optical systems. If the total dispersion
of a given configuration, D[P], is known, an accurate nonlocal approximation for the structure
magnified by a factor M, is given by

D[MP](λ )≈ 1
M

{
D[P]

(
λ
M

)
−Dm

(
λ
M

)}
+Dm(λ ), (2)
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Fig. 2. Fitness function vs. number of iterations for the in-house (solid red) and the con-
ventional (dashed blue) simplex algorithm.

where Dm is the material dispersion [5]. This expression significantly improves the previous
scaling formula for the group velocity dispersion reported in Ref. [6].

Equation (2) establishes a simple link between different points in the configuration space that
deserves to be exploited. This link can be noticed more clearly if the parameter space is broken
into different hyperplanes where M = Λ/Λ0 is constant, where Λ is a typical distance in the
structure, e.g., the pitch. Then the optimization algorithm will seek only into one hyperplane at
the time, while Eq. (2) efficiently determines which hyperplane – or equivalently M – is more
appropriate to minimize χ2. In this way, if we replace D[P] with D[MP] in Eq. (1), the original
optimization algorithm can be applied to simplices defined in those hyperplanes made up of
only N vertices.

On the other hand, minimizing χ2 with respect to M is a straightforward procedure using
Eq. (2). At the end of each iteration, the value of M which minimize χ2 at one of the vertices is
determined, and then the whole simplex at the current hyperplane can be transferred to the new
hyperplane at a negligible computational effort. As an example of the enhancement obtained
using this procedure, Fig. 2 shows how it overcomes the conventional algorithm [10].

3. Inner cladding modes for dispersion compensation

The procedure sketched in the previous section has been applied to the optimization of a com-
pensating PCF. As it is shown in Fig. 1, the PCF has four air-hole rings with three different
air-hole diameters. The most inner ring, with air-holes of diameter d1 (red circles), constitutes
the inner clad. The other air-hole rings, of diameter d2 and d3 (blue and green circles) constitute
the outer clad, being all the air-holes arranged in a triangular lattice of pitch Λ. The modes used
for dispersion compensation will be LP11 modes that propagates along the inner clad of the
PCF.

The values for the initial parameter vector were P0 = {Λ0,d1,d2,d3} =
{1.05 μm,0.46 μm,2d1,2d1}. Around these values four other vectors representing other
triangular PCFs were randomly chosen as vertices of the simplex described in the initial
hyperplane, Λ = Λ0, or equivalently M = 1. At the end of the optimization process, the
obtained fiber configuration should compensate the dispersion of a Corning LEAF fiber [14]
multiplied by the compensation factor X set to 100 [see Eq. (1)]. The initial design was
inspired on Dual Concentric Core Fibers (DCCF) [15,16] which have shown to be a successful
design for achieving highly negative dispersion curves despite it has only been used, up to our
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Fig. 3. (a) Residual dispersion for the optimized fiber with four (dashed red) and seven
(solid blue) air-hole rings. (b) Radiation losses as a function of the additional rings included
at the periphery of the cladding.

knowledge, for central core modes applications. It was set in this way to constrain the amount
of modes that can be excited into the internal clad while the final result of the optimization
process was not conditioned to maintain this configuration. Although the proposed structure is
not original, it is simpler than previous ones used for this purpose.

For the adapted downhill-simplex method, a satisfactory fitness value was obtained after 122
evaluations while the conventional algorithm was stagnated in a superior local minimum (see
Fig. 2). Though this amount of evaluations seems considerable, it is not if it is compared with
stochastic algorithms [11]. The resulting PCF with P = {0.851,0.322,0.794,0.638}μm has a
RMS value of the residual dispersion of 0.098ps/nm/km. The residual dispersion represented
by the red dashed curve in Fig. 3(a) shows the low dispersion remaining in the system after
compensating 100 km of the single mode fiber with 1 km of the proposed fiber. This could be
further improved, as it is shown by the blue solid curve, with a final refinement made after
knowing the results of the analyzes done for the radiation losses and the fabrication tolerance
as presented below. Moreover, the slope of both curves are nearly zero at the 1555nm region,
therefore it also compensates higher order dispersions such as the dispersion-slope. This fact
does not seems to be hampered by small deviations on the design parameters as will be shown
in the next section.

If radiation loss is an issue, additional external air-hole rings could be included without ap-
preciably affecting the fiber’s dispersion profile. Also, with the aid of Eq. (2), M could be read-
justed to fit the targeted dispersion. Figure 3(b) illustrates how by adding extra air-hole rings,
with diameter d2, radiation loss systematically decreases. Numerical results for the radiation
losses where performed using the PML method [17], whose implementation was validated and
tested by a recent procedure [18]. The blue solid curve in Fig. 3(a) shows how well the con-
figuration could be re-optimized using Eq. (2); a rescaling of just M = 1.014 was needed after
adding three outer rings with air-hole diameter d2.

Finally, the recording of a Long Period Grating that excites the fundamental mode coming
from the SMF fiber to the cladding mode LP11 of the compensating fiber, should not be de-
manding since the effective indexes of the lower order modes are well separated. As a matter
of fact, the difference between the effective index of the LP01 and the LP11 modes (see Fig. 1)
was Δneff = 0.122, while for the LP11 and the LP02 modes was Δneff = 0.051.

4. Fabrication tolerances

In the same way as the cladding structure conspicuously casts the dispersive properties of the
fibers, it can also be a disadvantage when considering the fabrication tolerances. After analyzing
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Fig. 4. Residual chromatic dispersion for the optimized fiber (dashed red curve) delimited
by the maximum deviations calculated for tolerances of (a) ±1% and (b) ±5% (dotted red
curves). The residual dispersion was severely reduced by adjusting the free parameter X in
Eq. (1) (solid blue bundled curves); differences between all the considered configurations
can not be appreciated within these scales.

all possible cases of fabrication inaccuracies with a 5% maximum deviation, we noticed that the
worst were those cases that formed an unrealistic combination between enlargement for some
parameters and contraction for the others. The maximum tolerance narrows after discarding
these spurious cases, realistically describing the plausible fabrication inaccuracies. On Fig. 4,
dotted red curves delimit the allowing fluctuations of up to 1% (a) and 5% (b) on M,d1,d2 and
d3. Notice that for 5% tolerances, simultaneous fluctuations in the parameters of the proposed
configuration in M and di implies that the accumulated deviations can exceed a 10% of inaccu-
racies, noticeably hampering the dispersion compensation. Fortunately, as it is well known, the
factor X that multiplies the targeted dispersion in Eq. (1) is also a free parameter, thus, it can
be conveniently adjusted to minimize the impact of the fabrication tolerances. In that way the
residual dispersion was severely reduced as it is shown by the tight bundled solid blue curves
in Fig. 4(a) and 4(b). The change applied to X for the different configurations range from 90.4
to 100.2 and from 65.5 to 182.5 for 1% and 5% tolerances respectively.

5. Conclusion

Albeit exciting cladding modes implies an additional complexity for fiber dispersion compen-
sators, we have demonstrated that they can be used to precisely tailor the dispersion profiles
needed to minimize the residual dispersion along with the third order dispersion. We have
obtained low residual dispersions in the whole C band, even by using a high compensation
factor and considering up to a 10% tolerance in the fabrication parameters. Moreover, the pro-
posed structure has a simple geometry compared with others DCCFs that have been proposed
in the literature [15, 16]. Also, since the compensating-cladding modes are isolated from the
fundamental and other higher order modes, grating recordings may not be too demanding. To
achieve these results, a well known optimization method has been adapted using an approx-
imate analytical expression for magnification. The benefits of the optimized algorithm are a
higher convergence speed while stagnation problems are reduced.
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