108,777 research outputs found
The Revival of Sree Sankara’s Hypothesis of Appearance and Reality: A Critical Analysis and Appraisal
The main foci of this paper are to delineate the distinction between appearance and reality in the light of Sree Sankara’s Advaita Philosophy and to look at how Sankara’s notion of appearance and reality is enjoying a contemporary revival, and it is important to try to develop an understanding of why this is so. The central theme of the notion of Sankara philosophy is that Brahman or the absolute spirit is the only reality and everything else is an illusory appearance of Brahman. The major essence of Sankara’s Philosophy can be expressed in the form of a half verse, ‘Brahma Satyam Jagat Mitya Jivo Brahmaiva Na apara' which means ‘Brahman is real the world is unreal and the so-called jiva nondifferent from Brahman'. In the current consciousness study, Sree Sankara’s notion of Brahman and Jagat is so conundrum in the material life of postmodern people. But it is inevitable to believe that Sree Sankara’s philosophy is not a conundrum for common people in contemporary society but the very conundrum for the non-common people
Vacuum Stability of the wrong sign Scalar Field Theory
We apply the effective potential method to study the vacuum stability of the
bounded from above (unstable) quantum field potential. The
stability ( and the mass renormalization
( conditions force the effective
potential of this theory to be bounded from below (stable). Since bounded from
below potentials are always associated with localized wave functions, the
algorithm we use replaces the boundary condition applied to the wave functions
in the complex contour method by two stability conditions on the effective
potential obtained. To test the validity of our calculations, we show that our
variational predictions can reproduce exactly the results in the literature for
the -symmetric theory. We then extend the applications
of the algorithm to the unstudied stability problem of the bounded from above
scalar field theory where classical analysis prohibits the
existence of a stable spectrum. Concerning this, we calculated the effective
potential up to first order in the couplings in space-time dimensions. We
find that a Hermitian effective theory is instable while a non-Hermitian but
-symmetric effective theory characterized by a pure imaginary
vacuum condensate is stable (bounded from below) which is against the classical
predictions of the instability of the theory. We assert that the work presented
here represents the first calculations that advocates the stability of the
scalar potential.Comment: 21pages, 12 figures. In this version, we updated the text and added
some figure
Weak solutions to problems involving inviscid fluids
We consider an abstract functional-differential equation derived from the
pressure-less Euler system with variable coefficients that includes several
systems of partial differential equations arising in the fluid mechanics. Using
the method of convex integration we show the existence of infinitely many weak
solutions for prescribed initial data and kinetic energy
Spontaneous time reversal symmetry breaking in the pseudogap state of high-Tc superconductors
When matter undergoes a phase transition from one state to another, usually a
change in symmetry is observed, as some of the symmetries exhibited are said to
be spontaneously broken. The superconducting phase transition in the underdoped
high-Tc superconductors is rather unusual, in that it is not a mean-field
transition as other superconducting transitions are. Instead, it is observed
that a pseudo-gap in the electronic excitation spectrum appears at temperatures
T* higher than Tc, while phase coherence, and superconductivity, are
established at Tc (Refs. 1, 2). One would then wish to understand if T* is just
a crossover, controlled by fluctuations in order which will set in at the lower
Tc (Refs. 3, 4), or whether some symmetry is spontaneously broken at T* (Refs.
5-10). Here, using angle-resolved photoemission with circularly polarized
light, we find that, in the pseudogap state, left-circularly polarized photons
give a different photocurrent than right-circularly polarized photons, and
therefore the state below T* is rather unusual, in that it breaks time reversal
symmetry11. This observation of a phase transition at T* provides the answer to
a major mystery of the phase diagram of the cuprates. The appearance of the
anomalies below T* must be related to the order parameter that sets in at this
characteristic temperature .Comment: 11 pages, 4 figure
An Intelligent Advisor for City Traffic Policies
Nowadays, city streets are populated not only by private vehicles but also by public transport, fleets of workers, and deliveries. Since
each vehicle class has a maximum cargo capacity, we study in this article how authorities could improve the road traffic by endorsing long term policies to change the different vehicle proportions: sedans, minivans, full size vans, trucks, and motorbikes, without losing the ability of moving cargo throughout the city. We have performed our study in a realistic scenario (map, road traffic characteristics, and number of vehicles) of the city of Malaga and captured the many details into the SUMO microsimulator. After analyzing the relationship between travel times, emissions, and fuel consumption, we have defined a multiobjective optimization problem to be solved, so as to minimize these city metrics. Our results provide a scientific evidence that we can improve the delivery of goods
in the city by reducing the number of heavy duty vehicles and fostering the use of vans instead.Universidad de Málaga. Campus de Excelencia Internacional AndalucÃa Tech.
This research has been partially funded by the Spanish MINECO and FEDER projects TIN2014-57341-R, TIN2016-81766-REDT, and
TIN2017-88213-R. University of Malaga, Andalucia TECH. Daniel H. Stolfi is supported by a FPU grant (FPU13/00954) from the Spanish MECD. Christian Cintrano is supported by a FPI grant (BES-2015-074805) from Spanish MINECO
Investigation of marmoset hybrids (Cebuella pygmaea x Callithrix jacchus) and related Callitrichinae (Platyrrhini) by cross-species chromosome painting and comparative genomic hybridization
We report on the cytogenetics of twin offspring from an interspecies cross in marmosets (Callitrichinae, Platyrrhini), resulting from a pairing between a female Common marmoset (Callithrix jacchus, 2n = 46) and a male Pygmy marmoset (Cebuella pygmaea, 2n = 44). We analyzed their karyotypes by multi-directional chromosome painting employing human, Saguinus oedipus and Lagothrix lagothricha chromosome-specific probes. Both hybrid individuals had a karyotype with a diploid chromosome number of 2n = 45. As a complementary tool, interspecies comparative genomic hybridization (iCGH) was performed in order to screen for genomic imbalances between the hybrids and their parental species, and between Callithrix argentata and S. oedipus, respectively. Copyright (C) 2005 S. Karger AG, Basel
A heterotic sigma model with novel target geometry
We construct a (1,2) heterotic sigma model whose target space geometry
consists of a transitive Lie algebroid with complex structure on a Kaehler
manifold. We show that, under certain geometrical and topological conditions,
there are two distinguished topological half--twists of the heterotic sigma
model leading to A and B type half--topological models. Each of these models is
characterized by the usual topological BRST operator, stemming from the
heterotic (0,2) supersymmetry, and a second BRST operator anticommuting with
the former, originating from the (1,0) supersymmetry. These BRST operators
combined in a certain way provide each half--topological model with two
inequivalent BRST structures and, correspondingly, two distinct perturbative
chiral algebras and chiral rings. The latter are studied in detail and
characterized geometrically in terms of Lie algebroid cohomology in the
quasiclassical limit.Comment: 83 pages, no figures, 2 references adde
Barriers to active transport in Palmerston North
falsePalmerston North, New Zealan
Lesion detection and Grading of Diabetic Retinopathy via Two-stages Deep Convolutional Neural Networks
We propose an automatic diabetic retinopathy (DR) analysis algorithm based on
two-stages deep convolutional neural networks (DCNN). Compared to existing
DCNN-based DR detection methods, the proposed algorithm have the following
advantages: (1) Our method can point out the location and type of lesions in
the fundus images, as well as giving the severity grades of DR. Moreover, since
retina lesions and DR severity appear with different scales in fundus images,
the integration of both local and global networks learn more complete and
specific features for DR analysis. (2) By introducing imbalanced weighting map,
more attentions will be given to lesion patches for DR grading, which
significantly improve the performance of the proposed algorithm. In this study,
we label 12,206 lesion patches and re-annotate the DR grades of 23,595 fundus
images from Kaggle competition dataset. Under the guidance of clinical
ophthalmologists, the experimental results show that our local lesion detection
net achieve comparable performance with trained human observers, and the
proposed imbalanced weighted scheme also be proved to significantly improve the
capability of our DCNN-based DR grading algorithm
- …