226 research outputs found

    How Emotion Strengthens the Recollective Experience: A Time-Dependent Hippocampal Process

    Get PDF
    Emotion significantly strengthens the subjective recollective experience even when objective accuracy of the memory is not improved. Here, we examine if this modulation is related to the effect of emotion on hippocampal-dependent memory consolidation. Two critical predictions follow from this hypothesis. First, since consolidation is assumed to take time, the enhancement in the recollective experience for emotional compared to neutral memories should become more apparent following a delay. Second, if the emotion advantage is critically dependent on the hippocampus, then the effects should be reduced in amnesic patients with hippocampal damage. To test these predictions we examined the recollective experience for emotional and neutral photos at two retention intervals (Experiment 1), and in amnesics and controls (Experiment 2). Emotional memories were associated with an enhancement in the recollective experience that was greatest after a delay, whereas familiarity was not influenced by emotion. In amnesics with hippocampal damage the emotion effect on recollective experience was reduced. Surprisingly, however, these patients still showed a general memory advantage for emotional compared to neutral items, but this effect was manifest primarily as a facilitation of familiarity. The results support the consolidation hypothesis of recollective experience, but suggest that the effects of emotion on episodic memory are not exclusively hippocampally mediated. Rather, emotion may enhance recognition by facilitating familiarity when recollection is impaired due to hippocampal damage

    Adaptation of eye and hand movements to target displacements of different size

    Get PDF
    Previous work has documented that the direction of eye and hand movements can be adaptively modified using the double-step paradigm. Here we report that both motor systems adapt not only to small direction steps (5° gaze angle) but also to large ones (28° gaze angle). However, the magnitude of adaptation did not increase with step size, and the relative magnitude of adaptation therefore decreased from 67% with small steps to 15% with large steps. This decreasing efficiency of adaptation may reflect the participation of directionally selective neural circuits in double-step adaptation

    Kuhnian revolutions in neuroscience: the role of tool development.

    Get PDF
    The terms "paradigm" and "paradigm shift" originated in "The Structure of Scientific Revolutions" by Thomas Kuhn. A paradigm can be defined as the generally accepted concepts and practices of a field, and a paradigm shift its replacement in a scientific revolution. A paradigm shift results from a crisis caused by anomalies in a paradigm that reduce its usefulness to a field. Claims of paradigm shifts and revolutions are made frequently in the neurosciences. In this article I will consider neuroscience paradigms, and the claim that new tools and techniques rather than crises have driven paradigm shifts. I will argue that tool development has played a minor role in neuroscience revolutions.The work received no fundin

    The role of the cerebellum in adaptation: ALE meta‐analyses on sensory feedback error

    Get PDF
    It is widely accepted that unexpected sensory consequences of self‐action engage the cerebellum. However, we currently lack consensus on where in the cerebellum, we find fine‐grained differentiation to unexpected sensory feedback. This may result from methodological diversity in task‐based human neuroimaging studies that experimentally alter the quality of self‐generated sensory feedback. We gathered existing studies that manipulated sensory feedback using a variety of methodological approaches and performed activation likelihood estimation (ALE) meta‐analyses. Only half of these studies reported cerebellar activation with considerable variation in spatial location. Consequently, ALE analyses did not reveal significantly increased likelihood of activation in the cerebellum despite the broad scientific consensus of the cerebellum's involvement. In light of the high degree of methodological variability in published studies, we tested for statistical dependence between methodological factors that varied across the published studies. Experiments that elicited an adaptive response to continuously altered sensory feedback more frequently reported activation in the cerebellum than those experiments that did not induce adaptation. These findings may explain the surprisingly low rate of significant cerebellar activation across brain imaging studies investigating unexpected sensory feedback. Furthermore, limitations of functional magnetic resonance imaging to probe the cerebellum could play a role as climbing fiber activity associated with feedback error processing may not be captured by it. We provide methodological recommendations that may guide future studies

    Robust Reproducible Resting State Networks in the Awake Rodent Brain

    Get PDF
    Resting state networks (RSNs) have been studied extensively with functional MRI in humans in health and disease to reflect brain function in the un-stimulated state as well as reveal how the brain is altered with disease. Rodent models of disease have been used comprehensively to understand the biology of the disease as well as in the development of new therapies. RSN reported studies in rodents, however, are few, and most studies are performed with anesthetized rodents that might alter networks and differ from their non-anesthetized state. Acquiring RSN data in the awake rodent avoids the issues of anesthesia effects on brain function. Using high field fMRI we determined RSNs in awake rats using an independent component analysis (ICA) approach, however, ICA analysis can produce a large number of components, some with biological relevance (networks). We further have applied a novel method to determine networks that are robust and reproducible among all the components found with ICA. This analysis indicates that 7 networks are robust and reproducible in the rat and their putative role is discussed

    The Pricing Behaviour of Firms in the Euro Area: New Survey Evidence

    Full text link

    Expression proteomics of UPF1 knockdown in HeLa cells reveals autoregulation of hnRNP A2/B1 mediated by alternative splicing resulting in nonsense-mediated mRNA decay

    Get PDF
    BACKGROUND: In addition to acting as an RNA quality control pathway, nonsense-mediated mRNA decay (NMD) plays roles in regulating normal gene expression. In particular, the extent to which alternative splicing is coupled to NMD and the roles of NMD in regulating uORF containing transcripts have been a matter of debate. RESULTS: In order to achieve a greater understanding of NMD regulated gene expression we used 2D-DiGE proteomics technology to examine the changes in protein expression induced in HeLa cells by UPF1 knockdown. QPCR based validation of the corresponding mRNAs, in response to both UPF1 knockdown and cycloheximide treatment, identified 17 bona fide NMD targets. Most of these were associated with bioinformatically predicted NMD activating features, predominantly upstream open reading frames (uORFs). Strikingly, however, the majority of transcripts up-regulated by UPF1 knockdown were either insensitive to, or even down-regulated by, cycloheximide treatment. Furthermore, the mRNA abundance of several down-regulated proteins failed to change upon UPF1 knockdown, indicating that UPF1`s role in regulating mRNA and protein abundance is more complex than previously appreciated. Among the bona fide NMD targets, we identified a highly conserved AS-NMD event within the 3` UTR of the HNRNPA2B1 gene. Overexpression of GFP tagged hnRNP A2 resulted in a decrease in endogenous hnRNP A2 and B1 mRNA with a concurrent increase in the NMD sensitive isoforms. CONCLUSIONS: Despite the large number of changes in protein expression upon UPF1 knockdown, a relatively small fraction of them can be directly attributed to the action of NMD on the corresponding mRNA. From amongst these we have identified a conserved AS-NMD event within HNRNPA2B1 that appears to mediate autoregulation of HNRNPA2B1 expression levels
    corecore