91 research outputs found

    Classifying breast cancer surgery: a novel, complexity-based system for oncological, oncoplastic and reconstructive procedures, and proof of principle by analysis of 1225 operations in 1166 patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the basic prerequisites for generating evidence-based data is the availability of classification systems. Attempts to date to classify breast cancer operations have focussed on specific problems, e.g. the avoidance of secondary corrective surgery for surgical defects, rather than taking a generic approach.</p> <p>Methods</p> <p>Starting from an existing, simpler empirical scheme based on the complexity of breast surgical procedures, which was used in-house primarily in operative report-writing, a novel classification of ablative and breast-conserving procedures initially needed to be developed and elaborated systematically. To obtain proof of principle, a prospectively planned analysis of patient records for all major breast cancer-related operations performed at our breast centre in 2005 and 2006 was conducted using the new classification. Data were analysed using basic descriptive statistics such as frequency tables.</p> <p>Results</p> <p>A novel two-type, six-tier classification system comprising 12 main categories, 13 subcategories and 39 sub-subcategories of oncological, oncoplastic and reconstructive breast cancer-related surgery was successfully developed. Our system permitted unequivocal classification, without exception, of all 1225 procedures performed in 1166 breast cancer patients in 2005 and 2006.</p> <p>Conclusion</p> <p>Breast cancer-related surgical procedures can be generically classified according to their surgical complexity. Analysis of all major procedures performed at our breast centre during the study period provides proof of principle for this novel classification system. We envisage various applications for this classification, including uses in randomised clinical trials, guideline development, specialist surgical training, continuing professional development as well as quality of care and public health research.</p

    Global health partnerships for continuing medical education: Lessons from successful partnerships

    Get PDF
    The past decade has witnessed an increase in global partnerships created to strengthen health systems and provide training to health professionals in low- and middle-income countries. These partnerships are complex interventions. This study focused on unpacking the characteristics of global partnerships that provide continuing education for health professionals. A realist approach underpinned the research design to identify the mechanisms that shape successful global partnerships. Two case studies focusing on global continuing medical education (CME) were studied longitudinally using a realist evaluation approach. To complement that finding, published research reports of global CME partnerships were synthesized using a realist synthesis approach. Data were collected over a three-year period and included interviews, participant observations, document reviews, and surveys. A hybrid thematic approach guided the data analysis. The study results suggested that global CME partnerships are highly dependent on human factors. On the one hand, motivational factors related to individual players help to shape the partnership goals, directions, and outcomes. On the other hand, relational factors such as trust, communication, and understanding play a key role in developing and sustaining global partnerships. As such, these partnerships highly rely on the individuals who champion the partnership at the country level or at the partnership level and in their ability to build relationships as well as empower key stakeholders

    Nutrient Enrichment Increases Mortality of Mangroves

    Get PDF
    Nutrient enrichment of the coastal zone places intense pressure on marine communities. Previous studies have shown that growth of intertidal mangrove forests is accelerated with enhanced nutrient availability. However, nutrient enrichment favours growth of shoots relative to roots, thus enhancing growth rates but increasing vulnerability to environmental stresses that adversely affect plant water relations. Two such stresses are high salinity and low humidity, both of which require greater investment in roots to meet the demands for water by the shoots. Here we present data from a global network of sites that documents enhanced mortality of mangroves with experimental nutrient enrichment at sites where high sediment salinity was coincident with low rainfall and low humidity. Thus the benefits of increased mangrove growth in response to coastal eutrophication is offset by the costs of decreased resilience due to mortality during drought, with mortality increasing with soil water salinity along climatic gradients

    How South Pacific mangroves may respond to predicted climate change and sea level rise

    Get PDF
    In the Pacific islands the total mangrove area is about 343,735 ha, with largest areas in Papua New Guinea, Solomon Islands, Fiji and New Caledonia. A total of 34 species of mangroves occur, as well as 3 hybrids. These are of the Indo-Malayan assemblage (with one exception), and decline in diversity from west to east across the Pacific, reaching a limit at American Samoa. Mangrove resources are traditionally exploited in the Pacific islands, for construction and fuel wood, herbal medicines, and the gathering of crabs and fish. There are two main environmental settings for mangroves in the Pacific, deltaic and estuarine mangroves of high islands, and embayment, lagoon and reef flat mangroves of low islands. It is indicated from past analogues that their close relationship with sea-level height renders these mangrove swamps particularly vulnerable to disruption by sea-level rise. Stratigraphic records of Pacific island mangrove ecosystems during sea-level changes of the Holocene Period demonstrate that low islands mangroves can keep up with a sea-level rise of up to 12 cm per 100 years. Mangroves of high islands can keep up with rates of sea-level rates of up to 45 cm per 100 years, according to the supply of fluvial sediment. When the rate of sea-level rise exceeds the rate of accretion, mangroves experience problems of substrate erosion, inundation stress and increased salinity. Rise in temperature and the direct effects of increased CO2 levels are likely to increase mangrove productivity, change phenological patterns (such as the timing of flowering and fruiting), and expand the ranges of mangroves into higher latitudes. Pacific island mangroves are expected to demonstrate a sensitive response to the predicted rise in sea-level. A regional monitoring system is needed to provide data on ecosystem changes in productivity, species composition and sedimentation. This has been the intention of a number of programs, but none has yet been implemented

    Allele-Specific Virulence Attenuation of the Pseudomonas syringae HopZ1a Type III Effector via the Arabidopsis ZAR1 Resistance Protein

    Get PDF
    Plant resistance (R) proteins provide a robust surveillance system to defend against potential pathogens. Despite their importance in plant innate immunity, relatively few of the ∼170 R proteins in Arabidopsis have well-characterized resistance specificity. In order to identify the R protein responsible for recognition of the Pseudomonas syringae type III secreted effector (T3SE) HopZ1a, we assembled an Arabidopsis R gene T–DNA Insertion Collection (ARTIC) from publicly available Arabidopsis thaliana insertion lines and screened it for plants lacking HopZ1a-induced immunity. This reverse genetic screen revealed that the Arabidopsis R protein HOPZ-ACTIVATED RESISTANCE 1 (ZAR1; At3g50950) is required for recognition of HopZ1a in Arabidopsis. ZAR1 belongs to the coiled-coil (CC) class of nucleotide binding site and leucine-rich repeat (NBS–LRR) containing R proteins; however, the ZAR1 CC domain phylogenetically clusters in a clade distinct from other related Arabidopsis R proteins. ZAR1–mediated immunity is independent of several genes required by other R protein signaling pathways, including NDR1 and RAR1, suggesting that ZAR1 possesses distinct signaling requirements. The closely-related T3SE protein, HopZ1b, is still recognized by zar1 Arabidopsis plants indicating that Arabidopsis has evolved at least two independent R proteins to recognize the HopZ T3SE family. Also, in Arabidopsis zar1 plants HopZ1a promotes P. syringae growth indicative of an ancestral virulence function for this T3SE prior to the evolution of recognition by the host resistance protein ZAR1. Our results demonstrate that the Arabidopsis resistance protein ZAR1 confers allele-specific recognition and virulence attenuation of the Pseudomonas syringae T3SE protein HopZ1a

    Fortunella margarita Transcriptional Reprogramming Triggered by Xanthomonas citri subsp. citri

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Citrus canker disease caused by the bacterial pathogen <it>Xanthomonas citri </it>subsp. <it>citri (</it>Xcc) <it>has </it>become endemic in areas where high temperature, rain, humidity, and windy conditions provide a favourable environment for the dissemination of the bacterium. Xcc is pathogenic on many commercial citrus varieties but appears to elicit an incompatible reaction on the citrus relative <it>Fortunella margarita </it>Swing (kumquat), in the form of a very distinct delayed necrotic response. We have developed subtractive libraries enriched in sequences expressed in kumquat leaves during both early and late stages of the disease. The isolated differentially expressed transcripts were subsequently sequenced. Our results demonstrate how the use of microarray expression profiling can help assign roles to previously uncharacterized genes and elucidate plant pathogenesis-response related mechanisms. This can be considered to be a case study in a citrus relative where high throughput technologies were utilized to understand defence mechanisms in <it>Fortunella </it>and citrus at the molecular level.</p> <p>Results</p> <p><b>cDNAs from sequenced kumquat libraries (ESTs) made from subtracted RNA populations, healthy vs. infected, were used to make this microarray</b>. Of 2054 selected genes on a customized array, 317 were differentially expressed (P < 0.05) in Xcc challenged kumquat plants compared to mock-inoculated ones. This study identified components of the incompatible interaction such as reactive oxygen species (ROS) and programmed cell death (PCD). Common defence mechanisms and a number of resistance genes were also identified. In addition, there were a considerable number of differentially regulated genes that had no homologues in the databases. This could be an indication of either a specialized set of genes employed by kumquat in response to canker disease or new defence mechanisms in citrus.</p> <p>Conclusion</p> <p>Functional categorization of kumquat Xcc-responsive genes revealed an enhanced defence-related metabolism as well as a number of resistant response-specific genes in the kumquat transcriptome in response to Xcc inoculation. Gene expression profile(s) were analyzed to assemble a comprehensive and inclusive image of the molecular interaction in the kumquat/Xcc system. This was done in order to elucidate molecular mechanisms associated with the development of the hypersensitive response phenotype in kumquat leaves. These data will be used to perform comparisons among citrus species to evaluate means to enhance the host immune responses against bacterial diseases.</p

    Pepper pectin methylesterase inhibitor protein CaPMEI1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance

    Get PDF
    Pectin is one of the main components of the plant cell wall that functions as the primary barrier against pathogens. Among the extracellular pectinolytic enzymes, pectin methylesterase (PME) demethylesterifies pectin, which is secreted into the cell wall in a highly methylesterified form. Here, we isolated and functionally characterized the pepper (Capsicum annuum L.) gene CaPMEI1, which encodes a pectin methylesterase inhibitor protein (PMEI), in pepper leaves infected by Xanthomonascampestris pv. vesicatoria (Xcv). CaPMEI1 transcripts are localized in the xylem of vascular bundles in leaf tissues, and pathogens and abiotic stresses can induce differential expression of this gene. Purified recombinant CaPMEI1 protein not only inhibits PME, but also exhibits antifungal activity against some plant pathogenic fungi. Virus-induced gene silencing of CaPMEI1 in pepper confers enhanced susceptibility to Xcv, accompanied by suppressed expression of some defense-related genes. Transgenic ArabidopsisCaPMEI1-overexpression lines exhibit enhanced resistance to Pseudomonas syringae pv. tomato, mannitol and methyl viologen, but not to the biotrophic pathogen Hyaloperonospora parasitica. Together, these results suggest that CaPMEI1, an antifungal protein, may be involved in basal disease resistance, as well as in drought and oxidative stress tolerance in plants

    Interstitial fluid: the overlooked component of the tumor microenvironment?

    Get PDF
    Background: The interstitium, situated between the blood and lymph vessels and the cells, consists of a solid or matrix phase and a fluid phase, together constituting the tissue microenvironment. Here we focus on the interstitial fluid phase of tumors, i.e., the fluid bathing the tumor and stromal cells. Novel knowledge on this compartment may provide important insight into how tumors develop and how they respond to therapy. Results: We discuss available techniques for interstitial fluid isolation and implications of recent findings with respect to transcapillary fluid balance and uptake of macromolecular therapeutic agents. By the development of new methods it is emerging that local gradients exist in signaling substances from neoplastic tissue to plasma. Such gradients may provide new insight into the biology of tumors and mechanistic aspects linked to therapy. The emergence of sensitive proteomic technologies has made the interstitial fluid compartment in general and that of tumors in particular a highly valuable source for tissue-specific proteins that may serve as biomarker candidates. Potential biomarkers will appear locally at high concentrations in the tissue of interest and will eventually appear in the plasma, where they are diluted. Conclusions: Access to fluid that reliably reflects the local microenvironment enables us to identify substances that can be used in early detection and monitoring of disease
    corecore