709 research outputs found

    Reverse engineering of a fixed wing unmanned aircraft 6-DoF model based on laser scanner measurements

    Get PDF
    This paper describes a method for deriving sixdegree- of-freedom (6-DoF) aircraft dynamics parameters adopting reverse engineering techniques from three dimensional (3D) laser scanner measurements. In particular, the mass and aerodynamic properties of the JAVELIN Unmanned Aircraft (UA) are determined using accurate measurements from the 3D scanner and successive CAD processing of the geometric data. In order to qualitatively assess the calculated 6-DoF, the trajectory for the spiral mode excited by the engine torque of this UA is simulated and compared to that of a published 6-DoF of the popular AEROSONDE UA which has very similar geometry. Additionally, to further confirm the validity of the approach, the reverse engineering procedure is applied to a published CAD model of the AEROSONDE UA and the associated 6-DoF parameters are calculated. Using these parameters, a spiral descent trajectory is generated using both the published and calculated parameters. The trajectories match closely, providing a good qualitative verification of the reverse engineering method. In future research, the accurate knowledge of the 6-DoF dynamics will enable the development of an Aircraft Dynamics Model (ADM) virtual sensor to augment the UA navigation system in case of primary navigation sensor outages. Additionally, further refinement of the calculated 6-DoF will involve wind tunnel and flight testing activities

    Draft Genome Sequences of Campylobacter jejuni Strains That Cause Abortion in Livestock.

    Get PDF
    Campylobacter jejuni is an intestinal bacterium that can cause abortion in livestock. This publication announces the public release of 15 Campylobacter jejuni genome sequences from isolates linked to abortion in livestock. These isolates are part of the 100K Pathogen Genome Project and are from clinical cases at the University of California (UC) Davis

    Draft Genome Sequence of Multidrug-Resistant Abortive Campylobacter jejuni from Northern California.

    Get PDF
    Campylobacter jejuni is an enteric bacterium that can cause abortion in livestock. This is the release of a multidrug-resistant Campylobacter jejuni genome from an isolate that caused an abortion in a cow in northern California. This isolate is part of the 100K Pathogen Genome Project

    Modelling the Risks Remotely Piloted Aircraft Pose to People on the Ground

    Get PDF
    Worldwide there is much e ort being directed towards the development of a framework of air- worthiness regulations for remotely piloted aircraft systems (RPAS). It is now broadly accepted that regulations should have a strong foundation in, and traceability to, the management of the safety risks. Existing risk models for RPAS operations do not provide a simple means for incorporating the wide range of technical and operational controls into the risk analysis and evaluation processes. This paper describes a new approach for modelling and evaluating the risks associated with RPAS operations near populous areas based on the barrier bow tie (BBT) model. A BBT model is used to structure the underlying risk management problem. The model focuses risk analysis, evaluation, and decision making activities on the devices, people, and processes that can be employed to reduce risk. The BBT model and a comprehensive set of example risk controls are presented. The general model can be applied to any RPAS operation. The foundations for quantitative and qualitative assessments using a BBT model are also presented. The modelling and evaluation framework is illustrated through its application to a case-study rotary wing RPAS for two operational scenarios. The model can be used as a basis for determining airworthiness certification requirements for RPAS

    An innovative navigation and guidance system for small unmanned aircraft using low-cost sensors

    Get PDF
    Purpose - The purpose of this paper is to design a compact, light and relatively inexpensive navigation and guidance system capable of providing the required navigation performance (RNP) in all phases of flight of small unmanned aircrafts (UA), with a special focus on precision approach and landing. Design/methodology/approach - Two multi-sensor architectures for navigation and guidance of small UA are proposed and compared in this paper. These architectures are based, respectively, on a standard extended Kalman filter (EKF) approach and a more advanced unscented Kalman filter (UKF) approach for data fusion of global navigation satellite systems (GNSS), micro-electro-mechanical system (MEMS)-based inertial measurement unit (IMU) and vision-based navigation (VBN) sensors. Findings - The EKF-based VBN-IMU-GNSS-aircraft dynamics model (ADM) (VIGA) system and the UKF-based system (VIGA+) performances are compared in a small UA integration scheme (i.e. AEROSONDE UA platform) exploring a representative cross-section of this UA operational flight envelope, including high-dynamics manoeuvres and CAT-I to CAT-III precision approach tasks. The comparison shows that the position and attitude accuracy of the proposed VIGA and VIGA+ systems are compatible with the RNP specified in the various UA flight profiles, including precision approach down to CAT-II. Originality/value - The novelty aspect is the augmentation by ADM in both architectures to compensate for the MEMS-IMU sensor shortcomings in high-dynamics attitude determination tasks. Additionally, the ADM measurements are pre-filtered by an UKF with the purpose of increasing the ADM attitude solution stability time in the UKF-based system

    Expanding the Envelope of UAS Certification: What it Takes to Type Certify a UAS for Precision Agricultural Spraying

    Get PDF
    One of the key challenges to the development of a commercial Unmanned Air-craft System (UAS) market is the lack of explicit consideration of UAS in the current regulatory framework. Despite recent progress, additional steps are needed to enable broad UAS types and operational models. This paper discusses recent research that examines how a risk-based approach for safety might change the process and substance of airworthiness requirements for UAS. The project proposed risk-centric airworthiness requirements for a midsize un-manned rotorcraft used for agricultural spraying and also identified factors that may contribute to distinguishing safety risk among different UAS types and operational concepts. Lessons learned regarding how a risk-based approach can expand the envelope of UAS certification are discussed

    Reverse engineering of a fixed wing unmanned aircraft 6-DoF model for navigation and guidance applications

    Get PDF
    A method for deriving the parameters of a six-degree-of-freedom (6-DoF) aircraft dynamics model by adopting reverse engineering techniques is presented. The novelty of the paper is the adaption of the 6-DoF Aircraft Dynamics Model (ADM) as a virtual sensor integrated in a low-cost navigation and guidance system designed for small Unmanned Aircraft (UA). The mass and aerodynamic properties of the JAVELIN UA are determined with the aid of an accurate 3D scanning and CAD processing. For qualitatively assessing the calculated ADM, a trajectory with high dynamics is simulated for the JAVELIN UA and compared with that of a published 6-DoF model of the AEROSONDE UA. Additionally, to confirm the validity of the approach, reverse engineering procedures are applied to a published CAD model of the AEROSONDE UA aiding to the calculation of the associated 6-DoF model parameters. A spiral descent trajectory is generated using both the published and calculated parameters of the AEROSONDE UA and a comparative analysis is performed that validates the methodology. The accurate knowledge of the ADM is then utilised in the development of a virtual sensor to augment the UA navigation and guidance system in case of primary navigation sensor outages

    Reflections on an urban federally qualified health center's (FQHC) medication-assisted treatment (MAT) program

    Get PDF
    The prevalence of individuals with opioid use disorder (OUD) and OUD-related unintentional overdose deaths has risen over the last three decades, leading OUD to be classified as a national epidemic. Medication-assisted treatment (MAT) is an evidence-based treatment model for OUD, whose widespread adoption could lead to a decline in OUD-associated comorbidities, infectious diseases, and reduction of trauma, suicide, and overdose deaths. The 2016 Comprehensive Addiction and Recovery Act (CARA) took an assertive stance on the need to combat OUD and offered advanced practice registered nurses and physician assistants eligibility to prescribe medications for OUD
    corecore