432 research outputs found

    Emergence of Functional Specificity in Balanced Networks with Synaptic Plasticity

    Get PDF
    In rodent visual cortex, synaptic connections between orientation-selective neurons are unspecific at the time of eye opening, and become to some degree functionally specific only later during development. An explanation for this two-stage process was proposed in terms of Hebbian plasticity based on visual experience that would eventually enhance connections between neurons with similar response features. For this to work, however, two conditions must be satisfied: First, orientation selective neuronal responses must exist before specific recurrent synaptic connections can be established. Second, Hebbian learning must be compatible with the recurrent network dynamics contributing to orientation selectivity, and the resulting specific connectivity must remain stable for unspecific background activity. Previous studies have mainly focused on very simple models, where the receptive fields of neurons were essentially determined by feedforward mechanisms, and where the recurrent network was small, lacking the complex recurrent dynamics of large-scale networks of excitatory and inhibitory neurons. Here we studied the emergence of functionally specific connectivity in large-scale recurrent networks with synaptic plasticity. Our results show that balanced random networks, which already exhibit highly selective responses at eye opening, can develop feature-specific connectivity if appropriate rules of synaptic plasticity are invoked within and between excitatory and inhibitory populations. If these conditions are met, the initial orientation selectivity guides the process of Hebbian learning and, as a result, functionally specific and a surplus of bidirectional connections emerge. Our results thus demonstrate the cooperation of synaptic plasticity and recurrent dynamics in large-scale functional networks with realistic receptive fields, highlight the role of inhibition as a critical element in this process, and paves the road for further computational studies of sensory processing in neocortical network models equipped with synaptic plasticity

    Connectivity reflects coding: A model of voltage-based spike-timing-dependent-plasticity with homeostasis

    Get PDF
    Electrophysiological connectivity patterns in cortex often show a few strong connections in a sea of weak connections. In some brain areas a large fraction of strong connections are bidirectional, in others they are mainly unidirectional. In order to explain these connectivity patterns, we use a model of Spike-Timing-Dependent Plasticity where synaptic changes depend on presynaptic spike arrival and the postsynaptic membrane potential. The model describes several nonlinear effects in STDP experiments, as well as the voltage dependence of plasticity under voltage clamp and classical paradigms of LTP/LTD induction. We show that in a simulated recurrent network of spiking neurons our plasticity rule leads not only to receptive field development, but also to connectivity patterns that reflect the neural code: for temporal coding paradigms strong connections are predominantly unidirectional, whereas they are bidirectional under rate coding. Thus variable connectivity patterns in the brain could reflect different coding principles across brain areas

    The interplay between somatic and dendritic inhibition promotes the emergence and stabilization of place fields

    Get PDF
    During the exploration of novel environments, place fields are rapidly formed in hippocampal CA1 neurons. Place cell firing rate increases in early stages of exploration of novel environments but returns to baseline levels in familiar environments. Although similar in amplitude and width, place fields in familiar environments are more stable than in novel environments. We propose a computational model of the hippocampal CA1 network, which describes the formation, dynamics and stabilization of place fields. We show that although somatic disinhibition is sufficient to form place fields, dendritic inhibition along with synaptic plasticity is necessary for place field stabilization. Our model suggests that place cell stability can be attributed to strong excitatory synaptic weights and strong dendritic inhibition. We show that the interplay between somatic and dendritic inhibition balances the increased excitatory weights, such that place cells return to their baseline firing rate after exploration. Our model suggests that different types of interneurons are essential to unravel the mechanisms underlying place field plasticity. Finally, we predict that artificially induced dendritic events can shift place fields even after place field stabilization

    Population coupling predicts the plasticity of stimulus responses in cortical circuits

    Get PDF
    Some neurons have stimulus responses that are stable over days, whereas other neurons have highly plastic stimulus responses. Using a recurrent network model, we explore whether this could be due to an underlying diversity in their synaptic plasticity. We find that, in a network with diverse learning rates, neurons with fast rates are more coupled to population activity than neurons with slow rates. This plasticity-coupling link predicts that neurons with high population coupling exhibit more long-term stimulus response variability than neurons with low population coupling. We substantiate this prediction using recordings from the Allen Brain Observatory, finding that a neuronā€™s population coupling is correlated with the plasticity of its orientation preference. Simulations of a simple perceptual learning task suggest a particular functional architecture: a stable ā€˜backboneā€™ of stimulus representation formed by neurons with low population coupling, on top of which lies a flexible substrate of neurons with high population coupling

    Supervised Learning in Spiking Neural Networks with FORCE Training

    Get PDF
    Populations of neurons display an extraordinary diversity in the behaviors they affect and display. Machine learning techniques have recently emerged that allow us to create networks of model neurons that display behaviors of similar complexity. Here we demonstrate the direct applicability of one such technique, the FORCE method, to spiking neural networks. We train these networks to mimic dynamical systems, classify inputs, and store discrete sequences that correspond to the notes of a song. Finally, we use FORCE training to create two biologically motivated model circuits. One is inspired by the zebra finch and successfully reproduces songbird singing. The second network is motivated by the hippocampus and is trained to store and replay a movie scene. FORCE trained networks reproduce behaviors comparable in complexity to their inspired circuits and yield information not easily obtainable with other techniques, such as behavioral responses to pharmacological manipulations and spike timing statistics
    • ā€¦
    corecore