12 research outputs found
Synthesis and Structure-Activity Relationships of 4-Pyridones as Potential Antimalarials.
A series of diaryl ether substituted 4-pyridones have been identified as having potent antimalarial activity superior to that of chloroquine against Plasmodium falciparum in vitro and murine Plasmodium yoelii in vivo. These were derived from the anticoccidial drug clopidol through a systematic study of the effects of varying the side chain on activity. Relative to clopidol the most active compounds show >500-fold improvement in IC50 for inhibition of P. falciparum in vitro and about 100-fold improvement with respect to ED50 against P. yoelii in mice. These compounds have been shown elsewhere to act selectively by inhibition of mitochondrial electron transport at the cytochrome bc1 complex.pre-print154 K
Defining the clinical and cognitive phenotype of child savants with autism spectrum disorder
Objective: Whilst savant syndrome is most commonly observed in individuals with Autism Spectrum Disorder (ASD), it has historically been associated with intellectual impairment, and little is known about the clinical and cognitive characteristics of intellectually able individuals with ASD and savant skills. Methods: Participants with ASD and validated savant skills were compared with age and intelligence matched non-savants with ASD using a range of diagnostic and standardised tests. Results: Although the analysis of the clinical data revealed few differences between the groups, striking differences emerged during cognitive testing. Children with savant skills exhibited highly superior working memory and their scores on tests of analytic skills were also superior to those of non-savants. Conclusion: We propose that obsessionality, focused attention, superior working memory and analytic skills facilitate veridical mapping and pattern perception abilities characteristic in savant syndrome
Integrated dataset of screening hits against multiple neglected disease pathogens.
New chemical entities are desperately needed that overcome the limitations of existing drugs for neglected diseases. Screening a diverse library of 10,000 drug-like compounds against 7 neglected disease pathogens resulted in an integrated dataset of 744 hits. We discuss the prioritization of these hits for each pathogen and the strong correlation observed between compounds active against more than two pathogens and mammalian cell toxicity. Our work suggests that the efficiency of early drug discovery for neglected diseases can be enhanced through a collaborative, multi-pathogen approach
Discovery and optimisation studies of antimalarial phenotypic hits
There is an urgent need for the development of new antimalarial compounds. As a result of a phenotypic screen, several compounds with potent activity against the parasite Plasmodium falciparum were identified. Characterization of these compounds is discussed, along with approaches to optimise the physicochemical properties. The in vitro antimalarial activity of these compounds against P. falciparum K1 had EC50 values in the range of 0.09-29 μM, and generally good selectivity (typically >100-fold) compared to a mammalian cell line (L6). One example showed no significant activity against a rodent model of malaria, and more work is needed to optimise these compounds
Structure-activity relationship studies of pyrrolone antimalarial agents
Previously reported pyrrolones, such as TDR32570, exhibited potential as antimalarial agents; however, while these compounds have potent antimalarial activity, they suffer from poor aqueous solubility and metabolic instability. Here, further structure-activity relationship studies are described that aimed to solve the developability issues associated with this series of compounds. In particular, further modifications to the lead pyrrolone, involving replacement of a phenyl ring with a piperidine and removal of a potentially metabolically labile ester by a scaffold hop, gave rise to derivatives with improved in vitro antimalarial activities against Plasmodium falciparum K1, a chloroquine- and pyrimethamine-resistant parasite strain, with some derivatives exhibiting good selectivity for parasite over mammalian (L6) cells. Three representative compounds were selected for evaluation in a rodent model of malaria infection, and the best compound showed improved ability to decrease parasitaemia and a slight increase in survival
Structure-activity relationship studies and Plasmodium life cycle profiling identifies pan-active N-aryl-3-trifluoromethyl pyrido[1,2-a]benzimidazoles which are efficacious in an in vivo mouse model of malaria
Structure-activity relationship studies involving N-aryl-3-trifluoromethyl pyrido[1,2-a] benzimidazoles (PBI) identified several compounds possessing potent in vitro activities against the asexual blood, liver and gametocyte stages of the Plasmodium parasite with no cross-resistance to chloroquine. Frontrunner lead compounds with good in vitro absorption, distribution, metabolism and excretion (ADME) profiles were subjected to in vivo proof-of-concept studies in NMRI mice harboring the rodent P. berghei infection. This led to the identification of compounds 10 and 49, effecting 98% and 99.93% reduction in parasitemia with mean survival days of 12 and 14, respectively, at an oral dose of 4x50 mg/kg. In vivo pharmacokinetics studies on 10 revealed slow absorption, low volume of distribution and low clearance profiles. Furthermore, this series displayed low propensity to inhibit the human ether-a-go-go-related gene (hERG) potassium ion channel whose inhibition is associated with cardiotoxicity
Discovery and structure-activity relationships of pyrrolone antimalarials
In the pursuit of new antimalarial leads, a phenotypic screening of various commercially sourced compound libraries was undertaken by the World Health Organisation Programme for Research and Training in Tropical Diseases (WHO-TDR). We report here the detailed characterization of one of the hits from this process, TDR32750 (8a), which showed potent activity against Plasmodium falciparum K1 (EC50 approximately 9 nM), good selectivity (<2000-fold) compared to a mammalian cell line (L6), and significant activity against a rodent model of malaria when administered intraperitoneally. Structure-activity relationship studies have indicated ways in which the molecule could be optimized. This compound represents an exciting start point for a drug discovery program for the development of a novel antimalaria