42 research outputs found

    North Pacific Mesoscale Coupled Air-Ocean Simulations Compared with Observations

    Get PDF
    Executive summary The main objective of the study was to investigate atmospheric and ocean interaction processes in the western Pacific and, in particular, effects of significant ocean heat loss in the Kuroshio and Kuroshio Extension regions on the lower and upper atmosphere. It is yet to be determined how significant are these processes are on climate scales. The understanding of these processes led us also to development of the methodology of coupling the Weather and Research Forecasting model with the Parallel Ocean Program model for western Pacific regional weather and climate simulations. We tested NCAR-developed research software Coupler 7 for coupling of the WRF and POP models and assessed its usability for regional-scale applications. We completed test simulations using the Coupler 7 framework, but implemented a standard WRF model code with options for both one- and two-way mode coupling. This type of coupling will allow us to seamlessly incorporate new WRF updates and versions in the future. We also performed a long-term WRF simulation (15 years) covering the entire North Pacific as well as high-resolution simulations of a case study which included extreme ocean heat losses in the Kuroshio and Kuroshio Extension regions. Since the extreme ocean heat loss occurs during winter cold air outbreaks (CAO), we simulated and analyzed a case study of a severe CAO event in January 2000 in detail. We found that the ocean heat loss induced by CAOs is amplified by additional advection from mesocyclones forming on the southern part of the Japan Sea. Large scale synoptic patterns with anomalously strong anticyclone over Siberia and Mongolia, deep Aleutian Low, and the Pacific subtropical ridge are a crucial setup for the CAO. It was found that the onset of the CAO is related to the breaking of atmospheric Rossby waves and vertical transport of vorticity that facilitates meridional advection. The study also indicates that intrinsic parameterization of the surface fluxes within the WRF model needs more evaluation and analysis

    Bora event variability and the role of air-sea feedback

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C03S18, doi:10.1029/2006JC003726.A two-way interacting high resolution numerical simulation of the Adriatic Sea using the Navy Coastal Ocean Model (NCOM) and Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®) was conducted to improve forecast momentum and heat flux fields, and to evaluate surface flux field differences for two consecutive bora events during February 2003. (COAMPS® is a registered trademark of the Naval Research Laboratory.) The strength, mean positions and extensions of the bora jets, and the atmospheric conditions driving them varied considerably between the two events. Bora 1 had 62% stronger heat flux and 51% larger momentum flux than bora 2. The latter displayed much greater diurnal variability characterized by inertial oscillations and the early morning strengthening of a west Adriatic barrier jet, beneath which a stronger west Adriatic ocean current developed. Elsewhere, surface ocean current differences between the two events were directly related to differences in wind stress curl generated by the position and strength of the individual bora jets. The mean heat flux bias was reduced by 72%, and heat flux RMSE reduced by 30% on average at four instrumented over-water sites in the two-way coupled simulation relative to the uncoupled control. Largest reductions in wind stress were found in the bora jets, while the biggest reductions in heat flux were found along the north and west coasts of the Adriatic. In bora 2, SST gradients impacted the wind stress curl along the north and west coasts, and in bora 1 wind stress curl was sensitive to the Istrian front position and strength. The two-way coupled simulation produced diminished surface current speeds of ∼12% over the northern Adriatic during both bora compared with a one-way coupled simulation.The research support for J. Pullen, J. D. Doyle, and T. Haack was provided by the Office of Naval Research (ONR) program elements 0602435N and 0601153N

    Coastally Trapped Wind Reversals: Progress toward Understanding

    Get PDF
    Coastally trapped wind reversals along the U.S. west coast, which are often accompanied by a northward surge of fog or stratus, are an important warm-season forecast problem due to their impact on coastal maritime activities and airport operations. Previous studies identified several possible dynamic mechanisms that could be responsible for producing these events, yet observational and modeling limitations at the time left these competing interpretations open for debate. In an effort to improve our physical understanding, and ultimately the prediction, of these events, the Office of Naval Research sponsored an Accelerated Research Initiative in Coastal Meteorology during the years 1993â 98 to study these and other related coastal meteorological phenomena. This effort included two field programs to study coastally trapped disturbances as well as numerous modeling studies to explore key dynamic mechanisms. This paper describes the various efforts that occurred under this program to provide an advancement in our understanding of these disturbances. While not all issues have been solved, the synoptic and mesoscale aspects of these events are considerably better understood.Most of the authors were supported through the Office of Naval Research Coastal Meteorology Accelerated Research Initiative, one of the authors (WTT) was supported by Program Element 0601153N, Naval Research Laboratory

    What determines the spatial pattern in summer upwelling trends on the U.S. West Coast?

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): C08012, doi:10.1029/2012JC008016.Analysis of sea surface temperature (SST) from coastal buoys suggests that the summertime over-shelf water temperature off the U.S. West Coast has been declining during the past 30 years at an average rate of −0.19°C decade−1. This cooling trend manifests itself more strongly off south-central California than off Oregon and northern California. The variability and trend in the upwelling north of off San Francisco are positively correlated with those of the equatorward wind, indicating a role of offshore Ekman transport in the north. In contrast, Ekman pumping associated with wind stress curls better explains the stronger and statistically more significant cooling trend in the south. While the coast-wide variability and trend in SST are strongly correlated with those of large-scale modes of climate variability, they in general fail to explain the southward intensification of the trend in SST and wind stress curl. This result suggests that the local wind stress curl, often topographically forced, may have played a role in the upwelling trend pattern.H.S. acknowledges the WHOI supports from the Coastal Research Fund in Support of Scientific Staff, the Penzance Endowed Fund in Support of Assistant Scientists, and the Andrew W. Mellon Foundation Endowed Fund for Innovative Research. K.B. and C.E. acknowledge support by the National Science Foundation through grants OCE-1059632 and OCE 1061434.2013-03-0
    corecore