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MOTIONS OF A SMALL SPAR BUOY

I. INTRODUCTION

Increasingly large numbers of air-sea measurements are being

made from buoys. While it is apparent that the motion of the buoys

affects the air-sea measurements, the extent of the effects is not

known. It is the purpose of this investigation to measure the motion

of a small spar buoy at sea. With this information, other investiga-

tors may make better estimates of the errors in air-sea measure-

ments caused by buoy motions.

Background

Two important air-sea measurements that are made from buoys

are the turbulent Reynolds stress and the wind speed gradient. From

theoretical considerations, Pond (1968) has investigated the effect of

buoy motion on the measurements of the Reynolds stress at sea. He

found that certain aspects of buoy motion, particularly the tilting,

may lead to significant errors in these measurements.

Let us first consider the general nature of energy contained in

the surface waves of the ocean. The energy of the ocean is predom-

inantly peaked at about 0. 1 cycles per second (Kinsman, 1965). There

is very little relative energy associated with wave frequencies greater

than about 1.0 cycles per second or less than about 0.05 cycles per
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second. Thus, any floating object on the sea surface will tend to be

driven by waves predominantly around 0. 1 cycles per second.

Most of the waves that account for the major portion of the total

wave energy adhere very closely to the first order small amplitude

wave theory. From this theory we know that in deep water, as a

wave passes, the water particles move around in circular orbits. An

object, such as a buoy floating on the surface, will tend to have the

same motions as the water particles would have had if the buoy were

not there. Thus, for waves much longer than the size of the buoy, the

buoy will move in an approximately circular motion about a stationary

point.

In addition to circular orbits, small amplitude first order wave

theory for deep water predicts that velocities and pressures will be

proportional to:

where

Zif ZAexp(- L

A = amplitude of the wave

L = the wave length

Z = depth.

Thus the velocity and pressure due to a passing wave are greater at

any depth for larger wave lengths for a given ampi itude. The effect

of the pressure and velocity of a passing wave also decreases
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exponentially with depth. The result is that a spar buoy will experi-.

ence a decreasing force along its length.

Now that we have considered something about the forces exerted

by ocean waves, we should consider how they act on a floating buoy.

Since buoys are usually symmetrical about the vertical axis, the

possible forces and torques are simplified. Usually horizontal

forces result in a horizontal center of mass acceleration of the buoy

and may produce a rotational acceleration in the plane of the force and

the vertical. Vertical forces usually produce only vertical accelera-

tions of the center of mass since there is little coupling between the

vertical forces and movements other than vertical.

A small flat buoy was used by Longuet Higgins etal. (1963) to

study wave spectra. The buoy was 5 feet 6 inches in diameter and

about a foot thick. To a first approximation, this buoy may be

regarded as moving in small oscillations about a fixed point. For

waves sufficiently long compared with its diameter, the buoy will

tend to have the same vertical and horizontal displacements as a

particle in a free wave, and hence take up the same orientation as

the free surface. The buoy motion may be described by:

a1
11, ax ay

= the vertical displacement of the sea surface

= the slopes of the surface in two perpendicular directions.
ax
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It should be noted that due to the low flat profile, the coupling between

the pitch and roll and the horizontal displacements (the surge and

sway) is negligible. Thus, a force on the side of the buoy parallel to

the surface will not cause the buoy to tilt with respect to the surface.

This flat buoy was measured for frequency response. It was

found to have a heave and pitch resonance frequency of 4. 0 radians

per second. Because of high damping, the amplitude response factor

of the buoy did not differ appreciably from unity whenever the wave

frequencies were less than or equal to 3. 5 radians per second.

Because of the size and geometry of this flat buoy, it is a very good

surface follower for deep water waves with a frequency of less than

about 0. 5 cycles per second. It was for this reason that Longuet

Higgins etal. decided to use the flat buoy to directly measure wave

spectra, They made measurements by simply placing a gyroscope

and an accelerometer on the buoy.

After considering one of the smallest instrumented buoys let us

go to the other end of the buoy spectrum and consider the result of

wave action on the largest buoy, FLIP (Floating Instrument Platform,

Bronson and Glosten, 1968). FLIP is interesting to study not only

because of its large size but also because of its geometry (Rudnick,

1964, 1967). FLIP extends to a depth of 300 feet below the water line

when in vertical position. Below the water line, the hull consists

first of a smaller cylinder of 12.5 feet in diameter, then expands to a



larger cylinder 20. 0 feet in diameter. Depth from the water line to

the top of the flair is 60 feet; while the depth to the bottom of the flair

is 150 feet. FLIP displaces 2, 104 tons and is indeed a large spar

buoy.

FLIP may be approximated by a simple cylinder floating ver-

tically and supported by bottom pressure. The bottom will experience

variation in pressure due to wave pressure only to the extent that wave

action penetrates to the depth of the bottom of the buoy. For a

cylinder of 91 meter draft, Rudnick calculated that the heave frequency

would be 0. 052 cycles per second (19.2 second period), There still

may be appreciable energy in long period swell of this frequency and

so the buoy would amplify the energy input of the sea surface. It was

thought that the heave resonance needed to be reduced to a point well

below any natural long period swell with any appreciable energy. In

order to reduce the vertical resonance frequency, the cross section

was reduced at the water line, which reduced the restoring force and

resulted in a heave frequency of 0. 037 cycles per second (27 second

period). This reduction is due to the shoulder at intermediate depths

feeling the downward wave pressure. The waves of higher frequency

will act predominately upon the shoulder rather than on the bottom of

the buoy. The shoulder has a lesser cross sectional area than the

bottom of the buoy, but is closer to the surface. The average diameter

of the shoulder at 32 meters depth is 61% of that of the bottom.



Because of the "shoulder effect" there is a critical wave fre-

quency at which attenuation with depth just offsets the area/depth ratio

between the shoulder and the bottom. The result is that the longer

swell generates upward forces on the bottom while the shorter waves

generate a downward force on the shallower shoulder. The null

frequency for FLIP was found to be 0.046 cycles per second (21.6

second period). The result of the shoulder on FLIP is a substantial

attenuation in its vertical motion.

There is much less attenuation of motion in the horizontal direc-

tion than in the vertical. The surface motion of the water affects the

buoy directly. The horizontal forces on the buoy are due to the hori-

zontal pressure of the water against the side of FLIP as a wave

passes. The effect decays exponentially with depth. So, reduction of

the hull cross section in the wave zone and the expansion of the hull in

the quieter region below is helpful.

Because of the shape, FLIP has a natural roll frequency of 0.021

cycles per second. Under average sea conditions the typical RMS

angular displacement would be of the order of 0. 25 degrees. The

typical median RMS values of vertical and horizontal accelerations

would be about 1 cm/sec2 and 20 cm/sec2, respectively.

Now that we have considered the extremes of buoy size--from

the very large to the very small-let us compare those buoys to the buoy

used in this investigation. The spar buoy utilized in this investigation
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has a sub-surface length of 24 feet (7. 32 m); a water-line diameter of

4 feet (1.22 m); and a mass of 1,200 lbs (546 kgm). The buoy is a

small spar buoy and is in between the sea-surface response character-

istics of the small Longuet-Higgins buoy and the large spar buoy,

FLIP. However, it is much more like the latter, in that it will tend

to resist pitch and roll forces and be more stable than the small

Longuet-Higgins buoy.

The smaller size of the buoy used in this study leads to many

advantages. The principle advantage is in ease of handling and

maneuverability. It can be easily kept in dry storage when not in use.

Maintenance and upkeep are minimal. it is, therefore, a cheap buoy

to build, use and maintain. In addition to the advantages of a small

buoy, we will show that this buoy also incorporates some of the

stability and response characteristics of a larger one.

Statement of the Problem

The problem is to relate the center of drag response of a small

spar buoy to the driving force of the sea. To determine the motion of

the buoy, an accelerometer and a gyroscope are used to measure three

linear accelerations and two tilts of the buoy. These accelerations

must be corrected for buoy motion and rotated to a stationary coordi-

nate system; the tilts are measured with reference to a stationary

coordinate system.



The motion of the sea, which principally drives the buoy, is

determined from two wave slopes and a wave height. These variables

also must be corrected for buoy motion and rotated to a stationary

coordinate system.

Thus, eight variables are used: three linear accelerations, two

tilts, two wave slopes, and a wave height. Once corrections and rota-

tions are made, the variables are Fast Fourier Transformed and

analysed spectrally to find the buoy response to the sea. Analyses

include power spectra, cross-spectra, coherences, phases and transfer

functions, among the driving forces (slopes and height) and the respon-

ses (accelerations and tilts).



II. EQUIPMENT AND DATA ACQUISITION

The principal piece of equipment used in this experiment, the

small spar buoy, can be seen in Figures 1, 2, and 3. Basically, the

buoy is a triangular television tower 15 m long with a weighted foot and

six fiberglass toroids around the center to provide buoyancy. The

toroids have an outer radius of 2 feet (0. 61 m); an inner radius of 1

foot(. 61 m), and a thickness of 1 foot (.31 m). The overall mass of

buoy is 546 kgm. Wave poles and buoy motion instruments were

attached to the structure of the buoy. The motion instruments con-

sisted of a vertical gyroscope and a linear accelerometer.

The gyroscope used was a Humphrey Inc. Vertical Gyroscope

model V624-0801-1. This gyroscope measures pitch angles of ± 60°

and roll angles of ± 90°. Static error band of the pitch is 1.25% of full

scale at 00, that of roll is ± 0.83% of full scale at 0.

The linear accelerometer was also made by Humphrey Inc. It is

a three-axis linear accelerometer model number LA73-0101-- 1. Its

range for the X and Y axis is ± 1 g, while the range in the Z axis is ± 1

g about a+lg bias so that the output is zero when the instrument is

stationary in the earths gravitational field. The accuracy is ± 1% of

full scale.

The three wave poles were constructed at OSU. Each pole is 20
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feet long, 1 inch diameter P. V. C. that has been threaded. NiCr wire

was wound in the threads of the poles to provide the resistance path.

The resistance of the poles was found to be 3. 79 ohms per cm.

The placement of the wave poles and the motion instruments can

be seen in Figure 1. The accelerometer and gyroscope were placed

inside the tower about 3 m above the water line. The axes of both of

these instruments were aligned. The arrangement of the wave poles is

shown in Figure 2. The poles are arranged in a right angle and project

halfway out of the water. The axes of the gyro-acceleration system

were parallel and perpendicular to the support of staff C. Thus the

wave pole axes are rotated 450 from the gyro-acceleration axis.

The three acceleration signals were put into voltage controlled

oscillators with different center frequencies and multiplexed together

for transmission by cable to the ship. The two tilt signals were

treated in the same fashion as the acceleration signals. The wave

height and wave slope signals were transmitted directly over the sea

cable to the ship. The signals were then recorded on an analogue

magnetic tape recorder (Hewlett Packard System 3955). A schematic

diagram of the data collection system is shown in Figure 4.

Later the analogue tape data was converted to digital form. The

analogue signals were reproduced with the same tape recorder system

that was used to collect the data. Then the signals were separated by

Sonex discriminators. At this point, all eight channels were passed
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through filter/amplifiers and then to an Analogue-to-Digital convertor.

Figure 5 shows a block diagram of the signal processing system.

The filter/amplifiers that were used were made to remove high

frequency noise and to improve the digital resolution. They had the

characteristics of a double RC roll off, low pass filter which was

three db down at 5. 9 Hz. The filter components were matched so that

the phase between channels would be preserved. This filtering

removes any noise above the band of interest. The filter cut-off is

high enough that neither amplitude or phase are affected in the fre-

quency band of interest. The analogue-to-digital convertor had an input

range of + 10 volts with corresponding output of ± 8192. The signals

from the tape recorder an4 Sonex discriminators were typically

smaller than ± 10 volts (of order ± 1 volt). Thus amplification was

provided to insure good digital resolution so that digital resolution

noise is negligible. A sample of the signals at the outputs of the

filter/amplifiers is shown in Figure 6.

The digitizing was done on an EAI computer, operated by the

Department of Electrical Engineering at OSU under the direction of

Dr. John L. Saugen. The digitizing rate was 8. 333 Hz. The

digitized data were then in a form to be accepted by the CDC 3300

computer where the actual data processing was done.
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Data Acquisition

The actual data came from two cruises, each about 5 miles off

Newport, Oregon, in 60 m of water. One cruise was in September,

1969; it will be called Record 1. Records 2 and 3 came from a cruise

in August, 1969. Record 1 was 30 minutes long while Records 2 and

3 were each 15 minutes long. In all records the waves were coming

from off-shore and should be typical of open ocean conditions.
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III. COMPUTATIONS

Time Series

In this work, time series techniques are used extensively. Let

us briefly review time series analysis. Blackman and Tukey (1958),

Jenkins and Watts (1968) and Lathi (1968) are good references on time

series, We know from them, for example, that a variable that is a

function of time, and therefore in the time domain, is equivalent to a

distribution of amplitudes in the frequency domain. The time domain

arid the frequency domain representations are equivalent and a variable

in one domain may be transferred to the other domain.

For analysis, it is necessary to have the time domain function

digitized. Digitizing takes samples of an analogue signal at regular

intervals, Lit, for some length of time T, for a total of n numbers.

The time domain digitized function can be converted to a Fourier

series, resulting in a frequency domain representation. The minimum

frequency will be 1 /T (where T is the maximum period). The maxi-

mum frequency will be 1 /(2i±it) (minimum period), which is also known

as the Nyquist frequency. The Fourier series is a frequency domain

representation with two numbers for each frequency, which may be

thought of as a complex number or vector. Thus, a function A may be

represented in the frequency domain as:



n/2A A Z. a cos (Zrrf.t) + b. sin (2rrf.t)i=I

where X is the mean, and f. = uT. If we transformed n numbers of a

variable to the frequency domain, we would have n Fourier coefficients,

but only n/2 frequencies.

Modern time series analysis uses the Fast Fourier Transform.

The Fast Fourier Transform yields the same results as the Fourier

series analysis, but with a greatly reduced number of computations.

A reduction in the number of computations means a significant

reduction in necessary computer time and expenses.

There are many advantages to dealing with a variable in the

frequency domain. Integration in the time domain is equivalent to

dividing the Fourier coefficients by Zirf. and changing cosine to sine

and sine to -cosine in the frequency domain. Differentiation in the

time domain is equivalent to multiplying the Fourier coefficients by

2rrf., changing cosine to -sine and sine to cosine in the frequency

domain, Filtering may be performed by transforming to the frequency

domain, and setting all of the undesired frequency's coefficients to

zero; then inverse Fourier transforming back to the time domain.

Fourier series may be extended to spectral analysis. A

function in the frequency domain may be arranged in terms of its

autospectra. An autospectra, 4, can be obtained from a Fourier

series, As an example, for the function A, for a frequency i,
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2 +b.2a.
1 1

2 zf

where f = lIT. If we integrate from 0 to infinity, then

ç4(f.)df. = (A
"0

which is the variance of A. The autospectrum for a single frequency

is a single number which is the contribution at that frequency to the

total variance. One can see how these relations arise by squaring the

original Fourier series and averaging, which yields
2 2

(A-)2=------2'
because only sine2 and cosine2 have non-zero averages.

The cross-spectrum is the comparison of the spectra between

two variables, usually to determine how much they are related. Let

us first discuss the cospectrum and define a second Fourier series

for B, similar to that for A, except a. and b. are replaced by c. and

d.. The cospectrum is constructed by multiplying the two Fourier

series together and averaging so that

a.c. +b,d.
11 11CO (f.)=AB 1 2f

The integral of the cospectrum over all frequencies is

S0cO
(f)df=(A-)(B-)ABi i

which is the covariance of A and B. Thus, the cospectrum of a sing'e

frequency is the contribution of the in-phase components to the total
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cross-spectrum of A and B. The other part of the cross-spectrum is the

quadrature spectrum. The quadrature spectrum is constructed by

shifting the phase at each frequency by 90° in the B series and

multiplying the two series together and averaging. The result is

a,d - eb.
11. 11.

QD (f)::ABi 2f
the quadrature spectrum is a measure of the contribution of the 900

out-of-phase components for each frequency to the cross-spectrum.

The cross-spectrum may be thought of in terms of a complex

vector, as

SAB(fi) = COAB(fi) + iQDAB(fi)

We can define a phase angle as,

QDAB(fi)
Phase (f.) Arc Tan 1C0(f)

Thus, the phase is analogous to the angle between two vectors.

For the in-phase components of our two variables, the correla-

tion is significant. The correlation varies between +1 and -1, and is

an indication of how well the two variables are related, provided that

they are in phase. The correlation between A and B is given by;

COR(f.) =
CO(f.)

\J

4 (f).4 (f)Ai Bi
The coherence squared is a measure of the relationship like the

correlation. The difference between the correlation and coherence
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squared is that the latter measures how well A and B are related

regardless of the phase. The coherence squared between A and B is

given by:

2CO(f.) + QD(f)2
I

COHSQD(f.)
4 (1) 4 (fAl Bi

The coherence squared ranges from 0 for unrelated quantities to 1 for

perfectly related quantities. It measures the fraction of the variance

in one signal that is related to the other, Coherence (or

coherence squared) measures the fraction of amplitude that is

related.

In addition to the cross-spectrum, another method of time series

analysis is transfer functions. The basic principal of transfer

functions is that from the spectrum of a 'causing" or "forcingt'

variable, we can calculate the result in the 'effected" variable, The

transfer function between A and B is calculated by:

TR(f.) = \1CQHSQD(f.) Ai) -

If the two variables are thought to be closely related and the

coherence squared is close to 1. 0, we may calculate the transfer by

I 4 (ft)
TR(f.) =

\,j "A'
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The transfer function may be thought of as a predictor. Given the

input amplitude at a certain frequency, we can predict the

resulting output amplitude for that frequency.

We can smooth our spectral results by band averaging the

cross spectra. Band averaging consists of taking the simple numerical

average of groups or bands of frequency amplitudes. As an example,

the band average of the first k frequencies of the autos pectrum of A is

2 2
i k k a. +b.

(f)
-i il

1)

where L = (k+l)/2. Band averaging smooths the spectrum and results

in more statistically reliable estimates.

Calculations

The motion of the buoy was computed for the center of gyration

of the buoy. The center of gyration should be close to the center of

drag due to the shape of the buoy. The toroids under the water line

may be approximated as a cylinder; so the center of flotation will be

at the symmetrical center of the approximated cylinder. In Appendix

II, it is demonstrated that the center of gyration is approximately the

center of flotation. The approximated cylinder of the toroids also

presents most of the area that the wave forces will be acting on, as

the lower part of the buoy is tower tubing and offers small cross

sections by comparison. The result is that the approximate center of
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the subsurface toroids will also be the center of drag, center of

flotation, and center of gyration.

Almost all variables had to be corrected for the motion of the

buoy. Once corrected, the variables were Fast Fourier transformed

and analyzed spectrally. The two variables that were not affected by

buoy motion were the tilts. The gyroscope measured the tilting of

the buoy from stationary earth coordinates. Thus, no correction of

the tilts was necessary. The x coordinate is chosen positive, outward

from the face of the tower on which the wave poles are mounted (and

thus points approximately opposite to the direction in which the waves

are traveling). The z axis is positive upwards and the positive y axis

is chosen to give a right-handed system. OX and 0'?, the tilts in the

xz and yz planes, respectively, are taken to be positive when the top

of the tower has a positive displacement relative to the center of

gyration.

Unlike the tilts, the measured horizontal accelerations al (x

direction) and aZ (y direction) had to be corrected for gravity and

angular acceleration. It was assumed that the tower did little spinning

or horizontal rotating. This assumption is based on the fact that the

buoy was tethered to the ship by a sea cable and bridle which restricted

horizontal rotation. In addition, the radius of gyration about the

horizontal axis is very short--only a few centimeters--making the

effect of the spin rotation negligible compared to the gravitational
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acceleration. Therefore, we assumed that all of the angular motion

of the buoy was due to tilting from the vertical.

A tilt off vertical introduces a false acceleration due to the

earthts gravity. This value is -g sin ex, where g is the acceleration

of gravity--98 1 cm/sec2. This false acceleration is subtracted from

the measured acceleration. Likewise -g sin e must be subtracted

from aZ.

Another required correction that needed to be made in the

horizontal accelerations involved angular accelerations. The mea-

sured accelerations will include additional accelerations because the

accelerometer is not at the center of gyration and drag. The calcula-

tion of the angular accelerations was done by spectral means. The

angular acceleration was computed by Fast Fourier Transforming the

ex and e data and multiplying the Fourier coefficients for the first 64

frequencies by -4 n-2f2, which is equivalent to double differentiation

in the time domain, The 64th frequency, which corresponds to 0. 51

Hz, ha no information above it except noise. Therefore, the

remaining higher frequencies ware set to zero. Double differentiation

accentuates the high frequencies and any noise at these frequencies.

The procedure used here, which was chosen after preliminary examin-

ation of the OX, ey spectra, insures that reliable, low noise second

derivatives are obtained. The D2OX/Dt2, D2OY/Dt2 coefficients were

inverse transformed back to time space. Now R ' D2OX/Dt2 is the



contribution of the angular acceleration to al, R is the radius of

gyration of the buoy, 4. 5 m (see Appendix I for calculation). A

similar procedure was used to find R DO /DtZ, the angular

acceleration in the y direction.

The two horizontal accelerations, Al and AZ, in buoy coordi-.

nates are given by:

d2exAl = al + g sin OX R
dt2

AZ aZ + g sin e - R d2OY

dt2
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The vertical acceleration also had to be corrected for gravity

and for the centrifugal acceleration due to the angular velocity of the

buoy off vertical, or d4) /dt. The angle 4), the tilt from vertical, was

calculated by using a small angle approximation, tan 4) = 4), since the

angle is 100 or less. The result was:

4) = (OX2 + eY2)'2

The angular velocity, d4) /dt was calculated by a six difference finite

differentiation, or:

8 4 (1+1) - 8 4(1-i) - 4(1+2) + (1-2)
tt

It was found that this finite differentiation approximated the derivative

to within 1 or 2%. The total centrifugal acceleration is given by:

R-2dt



The centrifugal acceleration correction was a small correction to

the vertical acceleration, of order 5-10%. Ignoring this correction or

correcting to the center of mass instead of the center of drag and

gyration would make very little difference to the final results.

The important correction to the vertical acceleration was for

the earthTs gravity. A tilt of the tower off vertical resulted in the

accelerometer indicating a false acceleration -g(1-cos 4). The

vertical acceleration, A3, corrected to tower coordinates is:

A3 a3 + g(l-cos) - R )2

where a3 is the measured vertical acceleration.

Once all of the three accelerations were corrected to the tower

coordinate system, it was necessary to rotate them to a stationary

vertical coordinate system. If the stationary horizontal accelerations

are AX and AY, and the vertical acceleration is AZ, then the final

stationary accelerations are

AX = Al cos OX + A3 . sin OX

AYAZ cosOy+A3 sinOy

AZ = -Al . sin OX + AZ . sin Gy + A3 cos

These rotation corrections are small- - differences between Al and

AX, etc. are of order 10%.

Like the accelerations, the sea slopes were corrected for the

buoy motion. As we saw from Figure 2, the sea slope axes were
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aligned at 450 to the motion instruments coordinate system, and must

first be rotated through 45° to align them with those of the motion

instrument system. A wave slope is measured by the difference in

resistance between two wave poles, which is calibrated to mean a

certain distance. The slope is equal to the pole difference divided by

the distance between poles. For both slopes, higher water in the

negative x and y directions was defined as positive since then a + slope

corresponds to a situation which one would expect to produce a + tilt.

Since the measured rotated slopes, si and s2 are aligned with the

tilt axes OX and OY. positive tilts of the buoy add false slope angles of

-OX and -OY, respectively. This false slope must be subtracted from

the measured sea slopes, sl and s2, to get the actual sea slopes,

SX and Sy, which are given by:

SX = sl + OX

SY = s2 + OY

The wave height was measured by the center wave pole used to

obtain the slopes. The wave height pole was on an arm aligned with

the motion systems instrument x axis. Higher water at the pole was

considered more positive. A positive OX tilt of the buoy introduces an

apparent positive wave height

D tan (OX),

where D is the distance from the center of the tower (79 cm), which

must be subtracted from the measured wave height to get the true wave
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height. Since OX is typically less than 50, we may use the small angle

assumption; that is,

tan OX OX

The wave height relative to the buoy, r1, is then given by:

W - D Ox,

where W = measured wave height.

To obtain the wave height relative to a stationary coordinate

system one must correct for the vertical displacement of the buoy.

To find the displacement of the buoy, the vertical acceleration

(corrected to stationary coordinates) was Fast Fourier Transformed

and integrated twice by dividing the Fourier coefficients by -(2irf ).
This procedure gives the vertical displacement of the buoy in

frequency space, which was added to the Fast Fourier Transformed

corrected wave height. The final result was a Fourier series

representing the actual wave height in a stationary coordinate

system.

Spectral Averages

A record was divided into blocks of 1, 024 points. Thus 512

spectral estimates are obtained, one for each fundamental frequency

band, with frequencies from 0. 008 Hz to 4. 17 Hz. The spectra for

each block were band averaged for each variable according to two

methods. The first was a logarithmic scheme which took the four
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lowest frequencies individually, then produced two averages of two

fundamental frequency bands, two of four frequency bands, two of

eight frequency bands; up to two of 128 frequency bands. The result

was a power spectrum band averaged into 18 bands, This logarithmic

form of band averaging gives approximately equal spacing of points

on a logf plot which allows one to plot a wide frequency range on a

single plot. f versus logf is used on such a plot since such a plot

conserves variance, that is,

$f4vdlnf = $4df

Logf is used rather than lnf since frequencies are more identifiable

from log f than lnf The area under an fc log f plot is proportional

to the variance.

The second averaging scheme was a simple average over two

fundamental frequency bands, This scheme started with the 9th

frequency (0. 077 Hz) and went to the 20th frequency (0, 257 Hz). This

two-band average scheme gave more detail in the wave band, where

most of the important energy is.

The results of all blocks were averaged over a given record.

These included 30 band averages for each of the variables, and co-

and quad-spectra for each of the five pairs of cros spectra (X SX;

ØX, SX; AX, SX AY, SY; AZ, ). The integrals of co- and quad-spectra

and autospectra were also averaged over the whole record, The

resultant record band averages of co- and quad-spectra were used to
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calculate the phase, coherence and transfer functions for each of the

five cross-spectra for the whole record.
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IV. RESULTS

Autospectra

Table 1 gives the root mean square values, J, for the eight

variables. Table 2 gives the peak spectral values for the eight

variables. Record 1 is about 30 minutes long; Records 2 and 3 are

each iS minutes long.

There is little energy in the variables except in tue wave band,

so graphs of the autospectra will only be shown in the vicinity of the

wave band. The plots will be f4 log f. Each point up to 0. 257 Hz is

an average of two fundamental frequency bands averaged over the

whole record.

The degrees of freedom in the two frequency band averages are

equal to 4 N, where N = number of blocks. Thus Record 1 has 56

degrees of freedom for the two band averages, and the Records 2 and

3 each have 28 degrees of freedom. The equivalent degrees of free-

dom can be computed from the variance of the spectral estimates

from block to block, and they approximately agree with the above

estimates. Hence, in this respect, the signals obey Gaussian

statistics.

Above f = 0. 257 Hz, the points represent logarithmic band

averages; each band again averaged over all blocks in the record.

Since even more frequencies go into making up these higher bands,
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Table 1. RMS values.

Variable/Record 1 2 3

Radians .0761 .0971 .0945
SX Degrees 4. 36 5. 56 5. 42

Radians .0640 .1160 .0776
SY Degrees 3.67 6.64 4.45

cr11 cm
(disregarding 6 tow- 33. 9 49.7 45. 6

est frequencies)
Radians .0448 .0613 .0624

OX Degrees 2. 57 3. 51 3. 58

Radians
OX

.0394 .0428 .0426
Degrees 2.26 2.45 2.44

aAX cm/sec2 28.7 65.4 64.4
aAY cm/sec2 24.7 30.9 29.7

AZ cm/sec2 28.0 52.0 46. 3

Table 2. Peak spectral values.

Variable/Record 1 2 3

rad2 sec .1060 .0670 .1160
rad2 sec .0216 .1100 .1030
cm2 sec 14,500 28,500 28,600
(wave band)
rad2 sec .0462 .0552 .0762
rad2 sec .0276 .0251 .0351
cm2/sec 10,600 40,300 62,700

AX
cm /sec 6, 060 4, 870 5, 770

AY

AZ cm2 /sec 4, 670 27, 700 17, 900
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their degrees of freedom are even larger.

The sea response is represented by the spectra of two wave

slopes and the wave height. The spectral forms of the two wave

slopes, SX and SY, are very similar as may be seen in Figure 7.

In both cases, there is very little energy at frequencies less than 0. 1

Hz or greater than 1 Hz. The wave slope energy is largely associated

with the frequencies from 0. 1 to about 0. 3 Hz, with a peak around

0. 12 Hz. In the slopes, there appears to be more energy in the x

direction than in the y in Record 1.

The wave height autospectrum is less well-defined than the

slope autospectrum. The low frequency end of the spectrum is dis-

torted. The values go up rapidly at frequencies lower than those

shown in Figure 8 and the values for the three lowest frequencies on

the figure are probably too large. The energy associated with wave

heights at frequencies greater than 1 Hz is negligible. The maximum

energy in the wave band is associated with frequencies between 0. 12

and 0. 3 Hz.

Anomalously large values for low frequencies are experienced

with the wave height. The wave height is obtained by integrating the

vertical acceleration twice in frequency space. The vertical accelera-

tion is corrected for gravity and rotated to stationary coordinates

before integration. Examination of the numerically twice-integrated

vertical acceleration showed that it is insensitive to rotation and the
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variation of the radius of gyration. However, the correction of the

accelerometer for the acceleration of gravity is significant. There is

a large variation of about 0. 016 Hz (1 cycle per minute) in the twice-

integrated acceleration. This low frequency variation is probably

caused by precession of the gyroscope which is not totally compen-

sated for by the instrument. The precessional effects would be

largest when the wave ampl.itudes were largest. The separation

between large amplitudes (groups) is about 1 minute.

Since the tilt of the buoy, measured by the gyroscope, is used

to correct for the variations of the vertical acceleration, there is a

spurious 1 cpm signal in the twice-integrated vertical acceleration.

Attempts to remove the spurious signal by linear detrending before

integration prove only partially successful. The result was that the

lowest 4 to 6 values of the wave height spectrum are not correct but

a result of instrumentation. The problem could be corrected by using

a gyroscope with a better precessional correction. Despite the

difficulties with the lowest 4 to 6 frequencies, it is felt that the wave

band (0, 1-0. 3 Hz) of the wave height autospectrum is reliable as far

as general shape and values, although the spectral values may be a

bit large near 0. 1 Hz. Extension of the downward trend of the low

frequency values suggests that the errors are not too large. In

calculating the total variance to get RMS values for i the contribu-

tions at frequencies below 0. 077 Hz (log f = -1. 11) are omitted.
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From the autos pectra of the slopes and wave heights, we have

a definition of the functions driving the buoy. Since the mean square

slope energy is greater in the x direction than the y for Records 1 and

3, we know that more wave energy is coming in the x direction for

these records. In Record 2 the RMS slopes are about equal for the

two directions. There is more wave energy in the wave slopes and

wave height in Records 2 and 3 than Record 1. Record 1, the longest

in real time, tends to be more smooth in its wave slope and wave

height spectra.

The buoy's response to the sea is represented by the spectra of

the two tilts and three accelerations. The spectra of the two tilts of

the buoy, OX and GY, are similar except for OX being greater than OY.

The tilt spectra are similar to the wave slope spectra except that the

tilts had a much more rapid cut-off of energy above about 0.26 Hz, as

one might expect since the buoy should filter out higher frequencies.

There is a narrow band associated with the tilts from 0, 118 to 0. 167

Hz, which contains most of the energy associated with the tilts (see

Figure 9). In RMS values OX and OY are about 0. 6 times SX and SY

respectively

The horizontal accelerations spectra of the buoy are broader

than the tilts spectra (see Figure 10). Accelerations are second

derivatives of displacements and so their spectra will have accented

higher frequencies and suppressed lower frequencies compared to
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displacement spectra from which they are derived. There is a sharp

increase in energy at 0. 1 Hz with peaks between 0. 118 and 0. 167 Hz,

and negligible energy at frequencies greater than 1, 0 Hz, Of the

three records, Record 1 has significantly smaller amplitudes; a

reflection of the smaller driving energy in the waves for Record 1.

The x acceleration always has significantly more energy than the y

acceleration (note the difference in scales in Figure 10) as one might

expect since the predominate wave direction tends to be in the x

direction and extra accelerations due to ship pulling on the buoy would

be mainly in the x direction.

There is some difficulty with the x acceleration signals. The

x acceleration signal in Record 2 appears to be somewhat choppy, but

even more so in Record 3. It is thought that the accelerometer was

sticking somewhat on the x axis and so not recording the x accelera-

tion properly.

AZ ias the same general spectral shape as the horizontal

accelerations (see Figure 11). Record 1 has much less energy

than the other two records. There is a sharp increase in energy at

0. 1 Hz and little energy beyond about 0. 4 Hz. The peak energy is at

slightly higher frequencies than the wave heights and slopes.

Now that we have looked at the tilts and acceleration, we have a

definition of the spectral form of the response of the buoy. The

spectral energy is quite similar to the wave spectrum in peaks and
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energy concentration in the wave band. The larger energy of OX and

AX reflects the fact that the predominate wave energy is in the x

direction, Of the three records, there is always more energy in the

2 and 3 records than the 1 record. The same is true of the wave

slopes and wave heights. The longer 3 record is more regular and

smooth than the other two, as was also reflected in the wave slopes

and heights. The broader spectra for Records 2 and 3 suggest that

there is mainly swell in Record 1, but sea and swell in Records 2

and 3.

Cross-spectra, Coherence and Phase

Now let us consider cross-spectra among variables. First let us

discuss what one might expect. The cross-spectra were examined

between the horizontal acceleration and the wave slope. Small

amplitude wave theory gives the wave height as

a sin (kx - t)

The slope of the surface is given by

SX = -j- = ak cos (kx - t)

The horizontal velocity is given by

agk cosh k (h + z) sin (kx - t)cosh kh

The horizontal acceleration is given by
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coshk(h+z)AX agk cosh kh cos (kx - t)

At the surface, z = 0, so

AX = agk cos (kx - t)

substituting in from SX,

AX=gSX

A similar relationship applies for the y direction. As a result, the

slope of the sea surface is related to the water particle velocity

acceleration in the same horizontal direction, and they are in phase.

The next cross-spectrum relationship reviewed is that between

the vertical acceleration and the wave height. Again, for small

amplitude wave theory, the vertical velocity is given by

allw=--

and the vertical acceleration of the surface is

2
2AZ = -(i)

at

Thus, the vertical acceleration of the water surface, and presumably

the buoy, are related to the wave height but they will be 180° out- of-

phase.

Finally, the cross-spe±tra are studied between the slopes and

the tilts. It is assumed that the sea slope SX is related to the buoy

tilt OX, and both are in phase. A similar relationship holds for the

y direction.
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Now that we have an idea of what one may expect, let us con-

sider the cross-spectra of the five pairs of variables. The first cross-

spectra are between OX and SX, the tilt of the buoy and the wave slope

in the same direction. The cospectra, coherence and phase may be

seen in Figures 12 and 13. The average integral of the cospectrum

for the three records was four times that of the quadrature spectrum.

which is to be expected since the phase is close to zero. The slope

and tilt are nearly in phase but there is more scatter at the higher

frequencies. Most of the cospectral energy is associated with the

0. 118 and 0. 167 Hz frequencies, with the maximum at the former.

The coherence is very high at low frequencies and decays quickly at

frequencies greater than 0. 3 Hz. Note that the coherence is only

meaningful where there are appreciable spectral values.
The cross-spectra between the OY and SY are very similar to

those between OX and SX. The cospectra, coherence and phase may be

seen in Figures 14 and 15. Again, most of the cross-spectral informa

tion is in the cospectra and at frequencies from 0. 118 to 0. 167 Hz.

There was generally a high coherence at low frequencies with a quick

change then to low coherence just past the wave band. SY and OY are

nearly in piase up to the wave peak of 0. 118 Hz and then the phase

begins to wander.

From the SX, OX and SY, QY cross-spectra, we see that the tilt

of the buoy is closely related to sea slopes. In fact, the buoy is a sea

surface follower with respect to slopes at low frequencies up through
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the wave band. Then, at frequencies above the wave band, the tilting

of the buoy has little coherence with the sea surface slope. With

respect to the tilts, therefore, the buoy is a swell follower, but tends

to filter out the sea.

For AX-SX, there are comparable magnitudes in the co- and

quadrature spectra, so both are plotted along with the coherence and

phase (see Figures 16 and 17). Cospectra show that most of the

contributions are between 0. 1 and 0. 3 Hz. The quadrature spectra

show basically the same thing.

Record 1 is different from the other two in that the cospectrum

is smaller than the quadrature spectrum. The coherence tends to be

scattered, but it is high in the wave band.

The cross spectra between the AY and SY (Figures 18 and 19)

show that they are not as well related as AX and SX. In general, the

Record 1 has considerably lower cross-spectral values than the other

two. The significant magnitudes of all three are spread between 0. 1

and 0. 7 Hz. The coherence of SY and AY shows a tendency for higher

values in the wave band, and lower values at the higher and lower

frequencies. The phase tends to wander but the trend is around 900.

The cross spectra between AX-SX and AY-SY appear to be more

complex than the tilt-slope relationships. The buoy's horizontal

accelerations appear to be fairly coherent with sea surface and roughly
900 out-of-phase at the peak of the wave energy. However, at other
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than peak wave frequency, the picture is confused. At very low fre-

quency, the buoy accelerations tend to be in phase with the slopes,

and out-of-phase at high frequencies. There appears to be a rapid

and large phase shift just after the wave peak frequency for all three

records. Such behavior suggests that the natural frequency for tilts is

near the center of the wave band.

The cross-spectra between the wave height and the vertical

acceleration show a stronger relationship than that between the slopes

and the horizontal accelerations. The cospectra are much larger

than the quadrature spectra so the cospectra are plotted along with

the coherence and phase in Figures 20 and 21. The cospectra are

large only at frequencies between 0. 1 and 0. 7 Hz. The wave height

and vertical acceleration have a coherence of almost +1 from the low

frequencies to just past the wave band, or 0. 6 Hz, and very quickly

drop to negligible levels. The high coherence at lower frequencies

is bound to occur since most of wave height comes from the double

integration of the vertical acceleration of the buoy. The phase is

almost 180° until the frequency exceeds 0. 5 Hz and then it begins to

wander at the higher frequencies.

We have considered the five sets of cross-spectra and then

coherence and phase. We note that perfect coherence does not

occur between the buoy and the sea. This non-perfect coherence is

due to the randomization of phase of the driving waves. In addition,
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there are ship effects, current and wind that are accelerating the

buoy. However, the waves are clearly driving the buoy.

Transfer Functions

The last of the relationships that we shall consider among the

five pairs of cross variables are the transfer functions. It is

assumed that the waves are driving the buoy and the coherence is high.

Therefore, the transfer function used will be

TR (B,A) \jA(i)
where is the input spectrum and is the output spectrum. The

phase relations which complete the transfer function description have

already been shown. In order to get transfer functions such that 1. 0

is the ideal relationship, some of the spectra are normalized accord-

ing to the expected results discussed in the last sub-section. The

input spectra are multiplied by g2 in calculating the transfer

functions with AX, AY, respectively. Likewise 4' is multiplied by

in calculating the transfer function with AZ.

The graphs of the transfer functions may be seen in Figures 22,

23, and 24. In the wave band, the transfer function of OX, SX is close

to 0.8, while the GY, SY transfer function is more like 0. 7. The buoy

tends to tilt with the sea surface but damps the torques somewhat.
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The AX, gSX transfer function is about 0. 6 while the AY, gSY

transfer function is around 0. 3. The buoy damps the horizontal

accelerations even more than the torques. In contrast, the AZ,

transfer function is close to 0. 9 in the wave band, which implies that

the buoy is almost a perfect surface follower with regard to the

surface displacement.

In some frequencies outside of the wave band, the transfer

function may appear erratic. However, this result is not significant

as there is relatively little energy outside the wave band and coupling

relationships are unreliably measured.
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VI. CONCLUSIONS

This buoy is a surface follower for swell but it filters out the

shorter waves of the sea. It would be suited for experiments where

swell following is desired, as in certain air-sea measurements.

Furthermore, swell following makes getting on and off the buoy at sea

easier, which is important if one needs to make modifications or

repairs at sea.

In cases where there is no significant swell, this buoy would

filter out most of the wave energy altogether. These cases would be

found in sheltered water or lakes. The spectral input of the buoys

motion in some air-sea measurements may be removed without undo

difficulty. Since the frequency of the significant energy of the buoyt s

motion is highly concentrated in a narrow band (between 0. 1 to 0. 5

Hz) and turbulence spectra have high values over a few decades of

frequency, the buoy influenced frequencies would appear as a spike

which could be removed. Thus, this small spar buoy is a suitable

platform to use in air-sea measurements having the advantages of

much less flow interference and motion than a surface ship. Its

motion is larger than a platform such as FLIP but its interference

with the flow is much less and its motion effects can be removed when

necessary.

Tilts are less than the slope of the sea. This buoy should never



experience RMS tilts of more than 100 and thus it would have very

little affect on measurements of the Reynold's stress (less than 5%)

(Pond, 1968).
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APPENDIX I

SYMBOLS AND COORDINATE SYSTEMS

A cc e le rations

al measured horizontal acceleration in direction x
aZ measured horizontal acceleration in direction y
a3 measured vertical acceleration
Al corrected horizontal acceleration in direction x
A2 corrected horizontal acceleration in direction y
A3 corrected vertical acceleration
AX horizontal acceleration in stationary direction x
AY horizontal acceleration in stationary direction y
AZ vertical acceleration in stationary vertical

Tilts

ex measured and actual tilt off vertical in x direction
OY measured and actual tilt off vertical in y direction

total tilt of the buoy off vertical

Wave Height

W measured wave height
wave height in stationary system

Wave Slopes

si measured wave slope in direction 1
sZ measured wave slope in direction 2
SX wave slope in xz plane
SY wave slope in yz plane



APPENDIX II

CALCULATION OF THE RADIUS OF GYRATION

Webster (1929) points out that there are two couples that act on

a floating object such as a buoy. The first is a gravity-buoyancy

couple and the second is an emersion- immersion couple.

The gravity-buoyancy couple is the significant couple and righting

factor for this spar buoy. The center of gravity is 1. 56 meters

below the center of buoyancy, insuring a strong righting moment.

The center of buoyancy is effectively the geometric center of the five

submerged toroids that provide the flotation for the buoy. The total

couple is:

r= gmr

In this case, m = 546 kgms and r 1. 56 meters; the total couple is

8.34 x lO kg
2 -2m m sec

The top two toroids are responsible for the emersion- immersion

couple. When the buoy tilts, part of the 'above the surfac&' toroid

is emersed, while part of the 'below the surface" toroid is immersed.

This causes a slight geometrical change in the arrangement of the dis-

placed water and the result is a righting couple. The emersion-

immersion couple is:

r = gpv

where v is the volume immersed, and r is the distance between the



centers of volume. For a tilt of 50, the resulting righting couple
2would be 2, 97 kgm m sec . Clearly the emers ion- immersion

couple is negligible compared to the gravity-buoyancy couple.

The significant righting couple of the buoy is the gravity-

center of buoyancy. Therefore the buoy rotates about the center of

flotation. The radius of gyration is the distance from the instrument

to the center of flotation, which is 4. 45 meters.




